
RedinSkala © 2013

The SMTP Protocol Fundamentals

Visit our site for the newest publications

www.redinskala.com

Names and Trademarks like Trend Micro, Microsoft, VMWare and other are registered names of their own

Vendors.

Partial or total distribution of this book’s content is not allowed unless explicit permission from the RedinSkala

team has been provided.

Copyright © 2013 RedinSkala. All rights reserved

Published date: January 2013

Version 1.0

1st. Edition 2013

3

Table of Contents

I. Purpose and Audience ... 6

Chapter 1. Introduction to Email .. 7

1.1. Email and Standards ... 8

1.2. Email flow components .. 10

1.3. Email Threat Landscape ... 14

1.3.1. SPAM ... 14

1.3.2. DHA ... 16

1.3.3. Malware .. 17

1.3.4. Bounced Mail .. 17

1.3.5. Spoofing .. 18

1.4. Summary .. 20

Chapter 2. The SMTP Structure .. 21

2.1. The SMTP Standards .. 22

2.1.1. RFC 821 ... 22

2.1.2. RFC 2821 ... 28

2.1.3. RFC 5321 ... 38

2.2. Email Structure ... 39

2.2.1. Handshake ... 39

2.2.2. Envelope .. 47

2.2.2.1. SIZE .. 49

2.2.2.2. DSN-RCPT-NOTIFY ... 51

2.2.2.3. DSN-RCPT-ORCPT .. 53

2.2.2.4. DSN-MAIL-RET ... 54

2.2.2.5. DSN-MAIL-ENVID .. 54

2.2.2.6. MDN .. 55

2.2.3. Headers ... 57

2.2.3.1. General rules for headers .. 58

2.2.3.2. Date and time Headers .. 61

Tabla de Contenido

 4

2.2.3.3. Origin Headers ... 62

2.2.3.4. Destination Headers ... 63

2.2.3.5. Identification Headers .. 64

2.2.3.6. Information Headers .. 65

2.2.3.7. Tracing Headers ... 65

2.2.3.8. Optional Headers ... 66

2.2.3.9. MIME Headers.. 67

2.2.4. Body .. 68

2.2.4.1. Body Simple .. 71

2.2.4.2. Alternate Body ... 75

2.2.5. Attachments .. 81

2.2.5.1. Multipart/mixed ... 85

2.2.5.2. Multipart/Digest... 92

2.2.6. Reply/Error Codes ... 95

2.2.6.1. Main Status Codes.. 96

2.2.6.2. Extended Status Codes ... 99

2.3. Native SMTP Vulnerabilities ... 119

2.3.1. Envelope Vulnerabilities ... 119

2.3.1.1. Initial connection and the HELO / EHLO Command 119

2.3.1.2. MAIL ... 121

2.3.1.3. RCPT ... 123

2.3.2. Header Vulnerabilities .. 123

2.3.2.1. Automatic Notifications ... 123

2.3.2.2. Content mismatch .. 124

2.3.2.3. File formats mismatch .. 124

2.3.2.4. Spoofing ... 124

2.3.3. Body and Attachment Vulnerabilities ... 125

2.3.3.1. SPAM .. 125

2.3.3.2. Content ... 125

2.3.3.3. Malware ... 125

Tabla de Contenido

 5

2.4. Summary .. 127

References .. 128

SMTP References ... 128

MIME Format References ... 129

DNS References ... 130

Microsoft Exchange Server 2003 References ... 130

Microsoft Exchange Server 2007 References ... 130

Microsoft Exchange Server 2010 References ... 130

Tools & Utilities References .. 131

6

I. Purpose and Audience

The goal of this book is to improve the knowledge of the SMTP Protocol to

tighten the security of email in your business, locating the security holes in

the actual standards, the forms, methods and tools that may be used to

mitigate them and therefore improving your business productivity.

This book is intended for technical staff with minimal experience in:

 Email Systems (Exchange, Postfix, Sendmail or other)

 Windows Server Operating Systems (2003/2008)

 Linux Server Operating Systems

 Basics on email flow

When you’re finished, you should have enough knowledge to identify if a

particular mail or SMTP connection may represent a risk to your

Organization, based on a proper interpretation of the SMTP protocol.

7

Chapter 1. Introduction to Email

No matter which MTA is implemented on your

Organization, the way they all behave is based

on the same mechanisms of the SMTP Protocol

and therefore they are all exposed to the same

types of attacks.

The email protocol has a close relationship with

the usual process used by a post office in real life.

Each process, such as determining the route to

reach the recipient, the letter format, the

situations where the letter cannot be delivered,

among others, has its counterpart on the SMTP

Protocol. This makes it easier to assimilate how

email operates.

However, the SMTP Protocol is not based on a

single standard. In order to really understand it

you need to understand its relationship and

integration with other protocols that may, in some

cases, add more security holes and vulnerabilities

than those that are native to the email protocol.

There are several threats that email platforms

must face every day. By understanding how an

attacker uses SMTP principles to compromise an

email architecture, you'll be able to act

proactively, improving the security of your

Organization and our employee's productivity as

well.

IN THIS CHAPTER:

 Email and standards

 Email flow

components

 Email Threat

Landscape

 Summary

Chapter 1. Introduction to Email www.redinskala.com

Email and Standards 8

1.1. Email and Standards
Electronic Mail (or email) is the generic term used to designate a service that allows a user

to send and receive information in an automatic way, having an storage mechanism

(mailbox) from which this user may check such information.

In order to make this information flow reliable, several International groups generated a

universal protocol that can be used under any platform and allows the process of sending

and receiving any email.

 August 1982. IETF (Internet Engineering Task Force) publishes the RFC 0821 on
Simple Mail Transfer Protocol, being this the first document that intended to
regulate the transmission of email, standardizing the network packets,
instructions’ order and type of content used during the communication. This RFC
was the first attempt to create a protocol that could work under any platform
(Windows, Linux, UNIX, etc.) and was such a success that it lasted almost twenty
years until it needed a new revision in order to combat the increasing email threat
landscape.

 April 2001. RFC 2821 is officially published obsolescing RFC 821. This new
document incorporates several enhancements to the protocol and from that
moment it would receive the new name of Extended SMTP (ESMTP). The new
characteristics allowed for a better control, including receiving a notification when
the email has been received, receiving a notification with the original email
attached every time the email could not be delivered, add non-standard characters
in the email headers, among others. There is also an improvement on the standard
that will allow SMTP to communicate among MTAs using encryption methods.
Although ESMTP becomes the new standard, it is important to emphasize that it is
mandatory that every MTA still allow the use of normal SMTP.

 October 2008. RFC 5321 obsoletes RFC 2821 incorporating to ESMTP new
functions to handle TLS and encrypted communications besides incorporating new
rules on the use of the original SMTP functions.

It's worth mentioning that every new RFC doesn't contain the whole material contained in
the previous RFC. This is why it's important to study the three SMTP RFC's in order to fully
understand the behavior and rules of email.

In spite of RFC 5321 containing all the information about SMTP/ESMTP implementation,
this is not enough to describe the full email flow. It is also necessary to define the
conventions used for naming the domains and mailboxes, the DNS records destined to
find the final MTA and the type of content allowed for sending. All this information is
contained on the appropriate section of every RFC. Below is the official list that
complements RFC 5321 for a full email flow.

Chapter 1. Introduction to Email www.redinskala.com

Email and Standards 9

 [1] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,

 August 1982.

 [2] Mockapetris, P., "Domain names - implementation and

 specification", STD 13, RFC 1035, November 1987.

 [3] Braden, R., "Requirements for Internet Hosts - Application and

 Support", STD 3, RFC 1123, October 1989.

 [4] Resnick, P., "Internet Message Format", RFC 5322, October 2008.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [6] American National Standards Institute (formerly United States

 of America Standards Institute), "USA Code for Information

 Interchange", ANSI X3.4-1968, 1968.

 ANSI X3.4-1968 has been replaced by newer versions with slight

 modifications, but the 1968 version remains definitive for the

 Internet.

 [7] Crocker, D. and P. Overell, "Augmented BNF for Syntax

 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [8] Hinden, R. and S. Deering, "IP Version 6 Addressing

 Architecture", RFC 4291, February 2006.

 [9] Newman, C., "ESMTP and LMTP Transmission Types Registration",

 RFC 3848, July 2004.

 [10] Klensin, J., Freed, N., and K. Moore, "SMTP Service Extension

 for Message Size Declaration", STD 10, RFC 1870, November 1995.

The strict implementation of each of these RFCs will assure that any MTA in the world, no

matter the platform, will be able to send and receive email successfully. In the following

chapters we'll study each of this points to make sure our mail solutions are working

according to the international standards in both sending and receiving email. It's worth

mentioning that the main purpose of SMTP isn't for the mail flow to be a safer mean for

information exchange, its scope is only to make sure that any SMTP Client is able to

communicate with any SMTP Server with the right syntax and mechanisms. It's because of

this that many hackers or cyber-criminals take advantage of the "security holes" in SMTP

Protocol to perform attacks on this kind of infrastructure. By understanding each of the

protocol basis we'll be able to make the right adjustments to our solutions in order to

cover these vulnerabilities and anticipate to any new attacks.

Chapter 1. Introduction to Email www.redinskala.com

 Email Flow Components 10

1.2. Email flow components
In Figure 1 we can see the basic SMTP model used to send an email between two MTA
servers:

NOTE: MTA (Message Transfer Agent) is the generic term used to designate any server /
application (for example Exchange and Postfix) that are capable of sending, receiving and
queuing email. Any entity that is not able to queue is designated as SMTP Proxy only.

Image 1. Basic components of the email flow

This simplistic model, will help us understand the basics of what happens when we use
our email clients to send and receive email. This model defines the main components
interacting in an email transfer. These are:

 SMTP Client. Is responsible for starting and closing the email transfer by answering
with the proper commands to each of the SMTP Server replies.

 SMTP Server. Is responsible for replying to each command sent by the SMTP Client
and when appropriate, receive and accept the full responsibility for the email
delivery. It should also respond with a proper code that reflects the reason why a
particular email cannot be accepted if for any reason the reception of such mail
should be rejected.

 SMTP Commands/Replies. These are a set of ordered and coherent commands and
codes used to transfer each piece of information that composes the full email. This
information is enough for an MTA to react accordingly in such a case when the
email transfer action is unsuccessful.

For a more detailed description about the multiple components we may find in an email
transaction we'll study the process described in Figure 2.

Chapter 1. Introduction to Email www.redinskala.com

 Email Flow Components 11

Image 2. Advanced model of the SMTP transaction

Let's analyze now each of the steps involved in the email flow according to Figure 2.

1. Creating a new mail. "Creating" here means a user or an automatic notification
system generating a completely new email (this may be an email web interface, an
application like Outlook or any automatic system that is able to generate an SMTP
conversation), responds to a previously received mail or re-sends a previously
received mail. The sender generates all the information the email needs to be
transferred to the next step, this information includes: sender's name, recipient's
name, headers (email clients usually write this information automatically with the
information they have at the moment) and finally the body of the email (if there
are any attachments they will be included at this point). After it is created, the
email is transferred to the MTA which will have the responsibility to deliver it to its
final destination.

2. DNS-MX Query. The MTA receives the email and marks it with a unique identifier
(Message-ID) that may be used for further tracing. Once marked, the email gets
queued as the MTA must first identify what the destination domains are. In order

Chapter 1. Introduction to Email www.redinskala.com

 Email Flow Components 12

to do this, the MTA must query a DNS server to find the MX (Mail Exchanger)
resource type of the destination domain found in the “RCPT TO” command to find
the IP addresses it must contact. This request is sent to the Firewall on the port 53
(UDP) which in turn redirects the traffic to Internet in order to contact the DNS
server. If the recipient’s domain is not public but private, this means it is an
internal domain used by company, then this mail will be treated as local and no
DNS query is necessary.

3. Selecting the MX Record. When the DNS Server receives the MX registry query, it
verifies in its own table and resolves the IP of the email server requested. If the
registry resolves to a name (FQDN) it then verifies the type “A” registry for that
server as well in order to answer to the request with a list that contains both the
server name and the server IP. This table also includes the priorities the MTA
should verify in order to select the appropriate email server. This is a typical
process when there are more than one MX registry for the same domain.

4. Starting the SMTP Session. Now that the MTA has the MX registry table, it’s time
to verify the priority of each server in the DNS response and choose the server
with the highest priority. In case there is more than one server with the same
priority, choosing the server will be decided randomly using the Round-Robbin
algorithm. At this point, the MTA acquires the SMTP Client role. This role will allow
it to start an SMTP conversation where it is the one that starts and ends the whole
session. With this information, the MTA tries to make the first contact to the
destination MTA directing the request through port 25 in the Firewall.

5. Routing the SMTP Communication. When the Firewall receives the TCP packets on
port 25 from the originating MTA, it directs the traffic to Internet using the most
appropriate route. It is worth mentioning that if the communication between two
MTA servers is not encrypted, it could be intercepted in the middle very easily
given the fact that this kind of communication is not usually peer-to-peer.

6. TCP Session. When the destination Firewall receives the originating MTA’s request
at port 25, a TCP session is established between both MTA servers so the
communication may be possible. The traffic received by the Firewall is transferred
to internal network until it reaches the destination MTA.

7. SMTP Session. The destination MTA receives the request at TCP port 25 from the
Firewall. From now on, this MTA server will behave as an SMTP Server. This means
the destination MTA server will respond to each request the SMTP Client sends.
The SMTP Server first responds to the communication with a 220 code, inviting the
SMTP Client to initiate an SMTP conversation. The SMTP Server won’t be able to
end this conversation until the SMTP Client request for it or until a considerable
amount of time has passed in a way it can justify a “forced close”. Both MTA
servers start transferring the email information in an ordered and coherent way.
To each SMTP Client request, the SMTP Server will respond with a code that will let
the SMTP Client know if it may continue the conversation or if there has been
some communication error it has to correct. Once the email transfer has ended,
the session ends. The SMTP Server marks the email with the original Message-ID
and queues it until delivery to its final destination.

Chapter 1. Introduction to Email www.redinskala.com

 Email Flow Components 13

8. Email delivery. Finally the destination MTA frees the email from the queue
delivering it to the recipient’s mailbox.

Each of these components may be more complex as we’ll see in the following chapters,

however, this model shows us the operational model that will work under any email

architecture no matter what MTA is used.

Chapter 1. Introduction to Email www.redinskala.com

Email Threat Landscape 14

1.3. Email Threat Landscape
When we talk about email threats or attacks we usually think about SPAM as the most
important but there are other vectors that could compromise your Organization’s
operation and confidentiality. In the following sections we’ll discuss about the most
important ones.

1.3.1. SPAM

The main problem Organizations have to face on daily basis is without a doubt SPAM. A
SPAM mail is basically any kind of mail that has arrived to your MTA server without being
explicitly solicited by the recipient. Under this category there are several types of
campaigns you might face.

1. Fake drugs
2. Fake fashion devices (jewelry for example)
3. Pornography and prostitution
4. Stock Information. This type of spam try to increase the stock value deceiving the

users to buy them
5. Phishing and other frauds
6. Trojans that infect PC’s with other malware programs. In general, they use fake

ads, news and fake links to malicious sites
7. Auto-responses and delivery error notifications sent by miss configured or

malicious MTA Servers
8. SPAM from other sources like politicians, charity and dishonest business

In order to achieve their goal, spammers use several methods, the same kind that are the
result from the ISP’s restrictions or Standars incorporated to avoid spam propagation.
Some of the most important mechanisms used by spammers are described below:

1. Botnets. These are networks of “zombies” (infected PC’s with malware) that send
mail on behalf of the spammer, without the consent of the owner of the machine.
Botnets are controlled by a “botmaster” who sells this kind of service to
spammers.

2. Free mail services. Free mail public accounts (like Yahoo and Hotmail) may be used
to send out SPAM.

3. Other free services. Some websites have the functionality to send out an email like
“Send to a friend”. This kind of functions may be used to send spam as well.

4. Open Proxies. These are compromised or miss configured servers that may be
used to redirect SPAM to Internet using your Organization’s resources. This kind of
servers may be sold just like botnets.

5. Stolen IP’s. Spammers may take control of Internet Addresses by illegal means,
using them for criminal purposes.

Some of the most common techniques used by spammers to cheat users and anti-spam
filters are the following:

Chapter 1. Introduction to Email www.redinskala.com

Email Threat Landscape 15

1. HTML Tricks. By using HTML code an attacker may manipulate the email making it

look in certain way to the user and in another to the anti-spam filter. For example,
by using hidden html code like javascript or comments which may be legitimate
but invisible. The less sophisticated filters may be confused by the invisible text
and therefore fail on the SPAM identification.

2. Bayesian poisoning. The email has large blocks of legitimate text trying to fool the
anti-spam filter by decreasing the threshold of spam words in the full mail.

3. Content morphing. The sender alters the text of the SPAM and the headers to fool
the less sophisticated anti-spam filter that look for well known fragments of text.

4. Attachments and images. Instead of sending the SPAM as text, the spammers
send their content as images attached to mail. By changing only one or a few pixels
on every image, the anti-spam engines won’t be able to detect this kind of mails all
at once, they’ll need a pattern to capture them on a one-to-one basis. If the anti-
spam filter doesn’t count with an OCR technology, this attack will pass through.

5. Forcing the secondary MX. There are several mail domains that specify a
secondary mail server in case the main server is not available. Some spammers will
try this alternative hoping the anti-spam security will be less restrictive than the
other servers.

6. Protecting against IP reputation services. When a zombie machine, which is part
of a botnet, starts sending SPAM to the victim the reputation services may act
automatically by blocking those connections that come from dynamic IP’s, but this
process may be difficult when the SPAM is sent from legitimate mail servers. Some
botnets send SPAM through the mail servers of the zombie machine to take
advantage of this situation.

7. Hiding the “action” call. Every time we click on a URL, we are making use of the
“action” function or “<a...>” HTML tag which lets the web browser get to
destination web server. Many anti-spam filters look for this kind of tags to
intercept the URL the spammer wants to redirect you.

The best way to combat such threats is through anti-spam and content filters that contain
one or more of the following mechanisms:

1. Pattern based SPAM detection. This is a slow detection but effective on the long
term. It consists of a pattern containing signatures that specifically identify a
unique mail (or mail content) that has previously been detected as SPAM. It is said
to be slow because for every new SPAM sample there is a need to add a new
signature. This is can also be considered as a reactive technique because a sample
must be feed to be detected.

2. Heuristic based SPAM detection. This is a proactive technique because it can
combine signatures for specific portions of the mail structure that combined
together may detect completely new SPAM samples by determining how much a
mail is similar to a SPAM.

Chapter 1. Introduction to Email www.redinskala.com

Email Threat Landscape 16

3. Image base SPAM detection. When the SPAM content is not transferred as text but
as an attached image or picture there are at least two ways to determine if such
content may be SPAM or not. The first one is to take the HASH of the image and
add it to the SPAM pattern, by comparing all images hashes in a mail with the
stored hashes the Anti-SPAM engine may determine if one of them correspond to
a SPAM. The second one involves OCR technologies which are designed to
recognize text inside an image. Hash comparison is not very efficient because for
any modification on the picture like a pixel, a new hash will need to be added to
the pattern. OCR is more effective but it consumes more CPU, so more resources
may be needed for avoiding delivery delays.

4. Content Filter based SPAM detection. This technique is a very good ally to any of
the other detection methods. It consists in an engine that is capable to find certain
words, phrases or string patterns inside the mail body, headers and in some cases
in attachments. Its administration may not be a 100% efficient as it needs manual
intervention for creating the detection rules, so in some cases it may be
considered as reactive. However, it gives you the advantage to react quickly when
your organization is being overwhelmed with several SPAM messages that are not
included in any other detection technique yet. (like pattern, heuristic or image
detection). Some of these filters may include conditions where you can also define
the route of the message, this is, you may create rules to block incoming or
outgoing mails depending on your needs.

5. IP reputation based SPAM detection. This is by far a “must” detection technique for
proactive SPAM and other attacks detection. It is fast and reduces the use of
resources. It is based on IP lists that have already been identified as SPAM sources.
Once it has received a new MTA connection, it makes a query (usually using DNS or
HTTP requests) to a local or cloud based service that contains a huge list of
malicious IP addresses. If the address is found it automatically drops the
connection without the mail having entered to your Organization. This technique is
said to be the most effective because it doesn’t really matter if the mail is already
detected as SPAM or not, the connection will be dropped saving your Organization
a lot of resources.

1.3.2. DHA

Directory Harvest Attack are those kind of threats where a malicious MTA is sending

several mails with random mailboxes trying to identify which of them really exist on your

Organization. These lists may be sold to other companies for other purposes like SPAM

campaigns or malicious activities.

You can detect such an attack because your MTA Server will start receiving mail for

inexistent mailboxes such as john.smith@company.com, john_smith@company.com or

jsmith@company.com.

Chapter 1. Introduction to Email www.redinskala.com

Email Threat Landscape 17

The biggest problem with this is not actually for the attacker to know the real mailbox list

of your Organization because this can be obtained by means of other SMTP techniques,

the biggest problem is for the Organization to spend unnecessary resources in mails that

cannot be delivered anyway, instead of using them for valid mail.

A good anti-DHA filter should be based on at least one of the following two characteristics:

1. Your Organization must manually control a list of all the valid mailboxes. The

problem here is this is a very time consuming task and an updated list may not

always be maintained on time, depending on the size of the company.

2. If your Organization has an LDAP where all valid mailboxes are registered, you can

integrate the Anti-DHA filter to this service. This way you’ll always have an updated

list in real time without any additional manual intervention.

1.3.3. Malware

Using mail for sending malware is not that common as it used to be several years ago,

however, it still remains as an important threat in attacks like APT’s (Advanced Persistent

Threat) where the intention is to target a specific company or employee for a very specific

objective.

Even though the probability of being compromised by an attached malware is low, it is still

necessary to count with this kind of protection may it be for security or audit reasons.

Don’t leave your Organization without an Antimalware solution for your mail

infrastructure.

The main threats to be detected by this type of engines are: virus, spyware, hacking /

cracking tools, key loggers, Trojans, worms and remote access tools amongst others.

1.3.4. Bounced Mail

Mails under this category are those automatically generated when a mail cannot be

delivered to its final destination. The SMTP protocol established this mechanism in order

for the sender to know if there were any problems with its mail delivery, however, an

attacker could send several mails using the company he wants to attack as the sender’s

mailbox to any other inexistent recipient mailboxes in other MTA Servers over the

Internet, these server will react to this situation by responding to each of this mails and

sending the corresponding notification (bounced mail) to the attacked domain which at

this time will receive hundreds or even thousands of mails in a very short time window.

This technique is used mostly for generating DoS attacks.

Chapter 1. Introduction to Email www.redinskala.com

Email Threat Landscape 18

Some administrators try to combat such attacks by blocking all mails that contain a null

sender (from:<>), however, such rules will also block legitimate notification mails. There

are more sophisticated filters that can detect this attack by establishing a monitor time

window in which they define a threshold of the number of notifications they can receive

from a single IP, this way, legitimate notifications can still be accepted.

1.3.5. Spoofing

This is a very common attack nowadays. It consists of a mail sent by an attacker who poses

as different person or domain. For example, the attacker may send a mail with a sender

like <user@cisco.com> with a mailbox that doesn’t actually belong to CISCO in this case.

As you’ll see in the following chapters, this technique is very common because it is actually

very easy to perform.

There are some techniques you can use to protect your Organization against this kind of

threats:

1. SPF Filter. Sender Policy Framework is a protocol designed to avoid the reception

of mails that illegally use a domain name that doesn’t belong to them. These kind

of filters first extract the domain part of the mailbox used in the HELO and/or the

MAIL commands, then they obtain the list of IP addresses authorized to use that

domain by querying the DNS server of the domain. If the connecting IP is not listed

in the resultant list, then the connection is dropped. Because this is still an

“experimental” protocol, some unexpected results may be found when the

comparison is done, in such situations the final action must be decided by the MTA

implementing the filter. One of its main advantages is that is easy and economic to

implement, Postfix for example only needs to enable certain libraries and

parameters to start the IP verification. If the Organization is willing to protect its

domain name to prevent its use by unauthorized servers, you just need to publish

an SPF record in your public DNS server and you’ll be ready to protect your domain

usage in all servers that make use of such filters. In Microsoft Exchange Servers this

option is available in the Edge Servers under an improved version called Sender-ID

that will explain next.

2. Sender-ID Filter. This is a Microsoft technology and is available by default on the

Microsoft Exchange servers family. Sender-ID or SID is based on SPF, the main

difference between them is an algorithm called PRA (Purported Address) that can

identify the last mailbox that really sent the mail to your Organization. Its main

disadvantage, which is the same as with SPF, is that this is still and “experimental”

protocol with the same limitations already mentioned for SPF. You can participate

Chapter 1. Introduction to Email www.redinskala.com

Email Threat Landscape 19

on this implementations by just making public a similar TXT record in your public

DNS. If you want to validate with SID and you don’t have an Exchange server, there

are several modules and plug-ins you can use for several mail servers in Windows

and Linux.

3. DKIM Filter. DomainKeys Identified Mail is another protocol that also helps

Organizations avoiding the receptions of mails that have senders that illegally use a

certain domain name. This is a standard protocol and this fact alone represents a

big difference when comparing it against SPF or Sender-ID, this is because almost

every possible situation and the corresponding actions are more accurately

defined. You can be sure that a mail that has a verified DKIM signature comes from

the source domain it is expected to be, however you can never be sure if such

mails are not malicious or some kind of SPAM. Its implementation is not that

simple and for both, generating and validating the signature you may have to

modify or install new modules in your existing infrastructure.

4. Content Filters. If your Organization doesn’t have or doesn’t want to implement

any new technology but you have a content filter in place, then you can still

protect your users by creating rules that block any incoming mail that uses your

Organization’s domain name, because this kind of mails should be processed by

your internal mail server and should not arrive from Internet. The main

disadvantage of these filters is that you can only create rules that protect your own

domain name.

Chapter 1. Introduction to Email www.redinskala.com

Summary 20

1.4. Summary

In this chapter we have explained the mechanisms used by an MTA server to perform a

successful mail delivery by using the SMTP protocol. From the moment a user presses the

Send button in its mail client, an ordered and coherent protocol is started that will allow

both the sender and recipient MTA servers to transfer the necessary information.

There are several attacks an MTA server may face because of the universal nature of the

protocol, and it is because of this fact, that no matter what mail server or operating

system you use, they are all vulnerable at some degree. You must take this security

vulnerabilities into account in order to implement the best methods for protecting your

Organization.

In the following chapters we’ll use this information to better understand the environment

a mail server is daily exposed to in each of the transactions it performs.

21

Chapter 2. The SMTP Structure

In order to understand the way email

vulnerabilities are used to attack your

infrastructure, is necessary to deepen our

knowledge on how email is operated and

generated.

This chapter is dedicated to get familiar with the

structure, protocols and functions used by the

mail flow and use this knowledge to transform it in

actions you may implement in your Organization.

We′ll begin by studying which are the rules stated

on the SMTP RFC Standars, these instructions must

be obeyed no matter what MTA and platform

you use.

Once we are familiar with the main steps in an

SMTP transaction, we′ll be ready to interpret each

of the sections that compose the email. We′ll

study the structure from the most simple mails in

plain text until the formation of more complex

mails with attachments and alternative visible

parts depending on the email client.

Finally we′ll make a summary of the native

vulnerabilities for SMTP and some

recommendations we may apply to avoid them

in your Organization.

IN THIS CHAPTER:

 The SMTP standards

 Email Structure

 Native SMTP

Vulnerabilities

 Summary

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 22

2.1. The SMTP Standards
The SMTP Protocol emerged as a necessity to standardize the way different platforms

communicated to send information, having this way a universal format any system could

process and understand. In the following sections, we′ll review what characteristics the

mail flow must meet according to the three Standars that have defined SMTP along its

history.

2.1.1. RFC 821

In August 1982 RFC 821 gets officially published to standardize the use of a protocol for

information exchange which from now on will be known as Simple Mail Transfer Protocol.

The concepts for this protocol implementation for any platform are established by this

RFC.

This model represents the first definition of an email transfer over any network. The first

point defines that the content to be used in the transfer will be composed exclusively of a

very specific set called the US-ASCII characters. The basic model of such a transfer includes

the following points:

[...]

3. THE SMTP PROCEDURES

[...]

There are three steps to SMTP mail transactions. The transaction is

started with a MAIL command which gives the sender identification. A

series of one or more RCPT commands follows giving the receiver

information.

Then a DATA command gives the mail data. And finally, the end of mail

data indicator confirms the transaction.

The first step in the procedure is the MAIL command. The <reverse-path>

contains the source mailbox.

 MAIL <SP> FROM:<reverse-path> <CRLF>

This command tells the SMTP-receiver that a new mail transaction is

starting and to reset all its state tables and buffers, including any

recipients or mail data. It gives the reverse-path which can be used to

report errors.

If accepted, the receiver-SMTP returns a 250 OK reply. The <reverse-path>

can contain more than just a mailbox. The <reverse-path> is a reverse

source routing list of hosts and source mailbox. The first host in the

<reverse-path> should be the host sending this command.

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 23

This definition indicates that a new mail transfer should begin with the MAIL command

used to indicate its origin. This is still valid and we can confirm it with the following

example:

220 ESMTP Postfix

MAIL FROM:<asdf@asdf.com>

250 2.1.0 Ok

In this example we can confirm the syntax is successfully accepted by the mail server

when we use a mailbox as an argument for the MAIL FROM command. However, the

definition also states that the mailbox used as argument is not just a mailbox but a

“reverse-path”. This means the MAIL command accepts the full path a mail server should

use to reach the sender when the mail cannot be successfully delivered.

Because of this definition, it is possible to define the list of servers to be used when

returning the delivery failure notification to the sender. This syntax is defined in this RFC

as a list of servers in which the first one is the one that originated the mail. This definition

is now obsolete because it implies all mail servers should act as Open-Relay but it is still

being accepted for compatibility issues even when it is not implemented. We can confirm

this with the following example:

220 ESMTP Postfix

MAIL FROM:<@hub.rskala.com,@hub.gmail.com:rskala@rskala.com>

250 2.1.0 rskala@rskala.com....Sender OK

In this example we can appreciate the Reverse-Path syntax is still valid and the receiving

mail server is still able to identify the sender’s mailbox in it. What the example says is that

if this mail cannot be delivered, a notification should be sent to “rskala@rskala.com” by

first passing through server hub.gmail.com and then to hub.rskala.com. For this process to

be executed correctly, hub.gmail.com should be able to receive external mail for a

different Internet domain than gmail, this behavior is usually known as Open-Relay

because the server is acting just as a intermediate step in the final mail delivery between

two external domains. Because this process permits the use of any mail server over the

Internet to perform attacks (like sending a bunch of SPAM) with this mail server as the

attacker, the new revision of the protocol deprecated this function.

The second step in the procedure is the RCPT command.

 RCPT <SP> TO:<forward-path> <CRLF>

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 24

This command gives a forward-path identifying one recipient. If accepted,

the receiver-SMTP returns a 250 OK reply,

and stores the forward-path. If the recipient is unknown the receiver-

SMTP returns a 550 Failure reply.

This second step of the procedure can be repeated any number of times.

The <forward-path> can contain more than just a mailbox. The <forward-

path> is a source routing list of hosts

and the destination mailbox. The first host in the <forward-path> should

be the host receiving this command.

This definition indicates that each recipient’s mailbox should be explicitly defined by an

RCPT command. Let’s say for example that you want to send a mail to three different

mailboxes, you should send three RCPT commands, one for each of the mailboxes as

shown in the following example:

MAIL FROM:<user@dominio.com>

250 2.1.0 user@dominio.com....Sender OK

RCPT TO:<user1@rskala.com>

250 2.1.5 user1@rskala.com

RCPT TO:<user2@rskala.com>

250 2.1.5 user2@rskala.com

RCPT TO:<user3@rskala.com>

250 2.1.5 user3@rskala.com

rcpt to:<user4@rskala.com>,<user5@rskala.com>

501 5.5.4 Invalid Address

From this example we can see how the first three RCPT commands are successfully

accepted, each of this operations is confirmed by the receiving mail server with a

numerical status code “250 2.1.5. user1@rskala.com” which indicates the SMTP Server

has started the list of recipient mailboxes in its internal buffer. You can also confirm that if

you try to send more than one mailbox in the same command, the server responds with a

numerical status code “501 5.5.4 Invalid Address” which means the syntax of the mailbox

is not the expected, the SMTP Server is not accepting any responsibility for the delivery of

this mail to that specific mailbox or mailboxes.

The RCPT command defined by this RFC, just as it happens with the MAIL command, is

designed to accept more than a mailbox but a “Forward-Path”, this means the command

accepts as an argument the full path to be used to reach the final recipient of the mail.

Just as it happens with MAIL, this is now deprecated for the same reason but it is still for

compatibility issues as shown in the following example. Remember that this behavior

implies that all mail servers should act as Open-Relays.

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 25

rcpt to:<@hub.rskala.com,@hub.gmail.com:user1@rskala.com>

250 2.1.5 user1@rskala.com

This examples confirms the old RFC 821 syntax for this command is still accepted even

when it is not actually implemented. This syntax indicates the mail should be delivered to

user1@rskala.com by first sending it through hub.gmail.com and then to hub.rskala.com

where the mailbox actually resides.

The third step in the procedure is the DATA command.

 DATA <CRLF>

If accepted, the receiver-SMTP returns a 354 Intermediate reply and

considers all succeeding lines to be the

message text. When the end of text is received and stored the SMTP-

receiver sends a 250 OK reply.

Since the mail data is sent on the transmission channel the end of the

mail data must be indicated so that

the command and reply dialog can be resumed. SMTP indicates the end of

the mail data by sending a line

containing only a period. A transparency procedure is used to prevent

this from interfering with the user′s

text (see Section 4.5.2).

Please note that the mail data includes the memo header items such as

Date, Subject, To, Cc, From [2].

The end of mail data indicator also confirms the mail transaction and

tells the receiver-SMTP to now process the

stored recipients and mail data. If accepted, the receiver-SMTP returns

a 250 OK reply. The DATA command should

fail only if the mail transaction was incomplete (for example, no

recipients), or if resources are not available.

[...]

This last section indicates the way the mail content should be transferred, its syntax and

the parts the content is composed of. First of all, you can see the transfer is initiated when

the DATA command is executed and mail server responds with the following code:

MAIL FROM:<user@domain.com>

250 2.1.0 user@domain.com....Sender OK

RCPT TO:<user1@rskala.com>

250 2.1.5 user1@rskala.com

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 26

DATA

354 Start mail input; end with <CRLF>.<CRLF>

As stated by the definition, after the DATA command the SMTP Server responds with a

numerical status code “354” and then just waits for the mail content. Once the full

content is transferred, the command is closed by sending a single “dot” in a line alone

(this syntax is defined as <CRLF>.<CRLF>) as shown below:

DATA

354 End data with <CR><LF>.<CR><LF>

from:user1

to:user2

subject:test

this is the content of the mail

.

250 2.0.0 Ok: queued as F30AFC7040D

After closing the command, the SMTP Server returns to the original command/reply state

by sending a 250 code. This means the mail transfer has ended and now the SMTP Server

has accepted full responsibility for this mail delivery. This section also states that inside

the body transferred through this command, all headers should be included here. Headers

should be the first lines of the content and should be separated by the body content by a

blank line, just as in the previous example where we use the from, to and subject headers.

This RFC also establishes that before initiating any transfer operation the SMTP Client

must identify itself by sending its name in the HELO command.

COMMAND SEMANTICS

[...]

HELLO (HELO)

This command is used to identify the sender-SMTP to the receiver-SMTP.

The argument field contains the host name of the sender-SMTP.

The receiver-SMTP identifies itself to the sender-SMTP in the connection

greeting reply, and in the response to this command.

This command and an OK reply to it confirm that both the sender-SMTP and

the receiver-SMTP are in the initial state, that is, there is no

transaction in progress and all state tables and buffers are cleared.

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 27

[...]

This section defines for the first time the use of the HELO command which is used to

identify both the SMTP Client and Server with their corresponding names. The definition

also states that this must be the first command to send in any SMTP transaction, this must

be sent even before the MAIL command. This is still valid and must be respected by all

MTA servers. The following examples show how the command is implemented and its

order relative to MAIL.

220 hub2.rskala.com ESMTP

HELO hub1.rskala.com

250 hub2.rskala.com Hello [192.168.0.89]

220 hub2.rskala.com ESMTP

MAIL FROM:<user@dominio.com>

503 5.5.2 Send hello first

With this information we are able to identify that no matter the platform, the following

parts are always present:

1. SMTP Sender. It has the responsibility to establish the network connection to the

SMTP Receiver for which the mail is destined to. Once the connection is

established and the SMTP Receiver has greeted with the 220 code, it is its

responsibility to initiate the whole conversation until the email transfer has been

completed. If the SMTP Sender doesn′t initiate the conversation or it stops it at any

given time, the SMTP Receiver has the right to end the conversation when a

certain time threshold has been exceeded, in any other situation the SMTP

Receiver must maintain the conversation open until the SMTP Sender wants to

continue.

2. SMTP Receiver. Once an SMTP Sender has successfully established a TCP

Connection on port 25, the SMTP Receiver must respond with a 220 code

indicating it is willing to establish a conversation. Its responsibility is to give an

answer to each command sent by the SMTP Sender and if the conversation is

satisfactory, accept and deliver the email to the final recipient.

3. SMTP Conversation. This is a series of SMTP ordered commands and replies that

together establish the rules under the email transfer takes place.

Another key concept in this RFC is the set of components that composes an email.

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 28

1. ENVELOPE. This section is defined by the MAIL FROM and RCPT TO commands.

This information is used by the MTA to identify the route it must follow to find the

recipient and in case of a failure, identify the return path to the original sender.

The RFC defined a syntax for this command by which the SMTP Sender first

provides a list of mail servers (starting by the SMTP Sender itself) through which

the email must pass. This feature implied that ALL the MTA server should be open-

relays and send email on behalf of any other MTA.

2. HEADERS. These are initiated immediately after the DATA command and contain

all the visible and invisible information for the recipient. Such headers may be:

From, To, BCC, CC, Date, Message-ID, etc. This block ends after sending two

consecutive <CRLF> or "ENTER".

3. BODY. The mail body begins right after the Headers block has finished. This

contains all the readable information for the recipient. If the mail contains any

attachments, these must be sent before the body blocks is closed. When the mail

body has been successfully transferred, the mail is closed by the following syntax:

<CRLF>.<CRLF> or "ENTER".(dot)"ENTER".

4. ATTACHMENTS. If the mail is to have any attachments then the headers should

indicate the content is compatible with the MIME format and it must identify what

is the boundary the MTA should use to separate the different attachments

contained in the body. Attachments are transmitted as part of the body after the

readable sections had ended. In order to separate the different attachments from

one another, the MTA uses the boundary text to identify the beginning and the

end of each part. Once the transfer has ended the mail body is closed as described

above.

2.1.2. RFC 2821

In April 2001, the RFC 2821 obsoletes 821 in order to counteract the rising of email

threats. The main differences are described below.

1. The Extended SMTP.

2.2.1 Background

[...]

 In an effort that started in 1990, approximately a decade after RFC821

 was completed, the protocol was modified with a "service

 extensions" model that permits the client and server to agree to

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 29

 utilize shared functionality beyond the original SMTP requirements.

 The SMTP extension mechanism defines a means whereby an extended SMTP

 client and server may recognize each other, and the server can inform

 the client as to the service extensions that it supports.

2. EHLO substitutes HELO in the new ESMTP Framework.

2.2.1 Background

[...]

 Contemporary SMTP implementations MUST support the basic extension

 mechanisms. For instance, servers MUST support the EHLO command even

 if they do not implement any specific extensions and clients SHOULD

 preferentially utilize EHLO rather than HELO. (However, for

 compatibility with older conforming implementations, SMTP clients and

 servers MUST support the original HELO mechanisms as a fallback.)

 Unless the different characteristics of HELO must be identified for

 interoperability purposes, this document discusses only EHLO.

Sections 1 and 2 indicate the basic mechanisms like MAIL and RCPT are still available but

there are new ones incorporated in the new framework. ESMTP now gives the option to

incorporate new service extensions . This can be confirmed when you send EHLO instead

of HELO when you are initially greeting the MTA server.

EHLO hub.rskala.com

250-hub1.rskala.com Hello [192.168.0.89]

250-TURN

250-SIZE

250-ETRN

250-PIPELINING

250-DSN

250-ENHANCEDSTATUSCODES

250-8bitmime

250-BINARYMIME

250-CHUNKING

250-VRFY

250-X-EXPS GSSAPI NTLM LOGIN

250-X-EXPS=LOGIN

250-AUTH GSSAPI NTLM LOGIN

250-AUTH=LOGIN

250-X-LINK2STATE

250-XEXCH50

250 OK

The SMTP Client uses this list to know exactly which services are supported by the SMTP

Server. The main reason for replacing EHLO with HELO is that with HELO, the SMTP Client

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 30

will never know which services are available until it tries one of them and the service is

actually called or refused. With EHLO, any mail server can know at the moment what

services and mechanisms are available for execution. Let’s suppose for example that a

mail server wants to establish a TLS session before to securely transmit a message. If it

chooses to issue a HELO command, it doesn’t really know if the SMTP Server is really

configured to start this kind of communication, so it will just send a “blind” STARTTLS and

wait for the response. If it uses EHLO, it can search the STARTTLS command and if it

appears listed then the SMTP Client can be sure a TLS conversation can be implemented.

Even when HELO is no longer recommended, ALL mail servers should still accepted for

compatibility issues.

3. The integration of new extensions that allow the development of new MTA

features.

2.2.2 Definition and Registration of Extensions

[...]

 In addition, any EHLO keyword value starting with an upper or lower

 case "X" refers to a local SMTP service extension used exclusively

 through bilateral agreement. Keywords beginning with "X" MUST NOT be

 used in a registered service extension. Conversely, keyword values

 presented in the EHLO response that do not begin with "X" MUST

 correspond to a standard, standards-track, or IESG-approved

 experimental SMTP service extension registered with IANA. A

 conforming server MUST NOT offer non-"X"-prefixed keyword values that

 are not described in a registered extension.

[...]

This new definition allows each mail server to implement local mechanisms and services

without them to be part of an official standard, the only condition is to explicitly present

them in the EHLO response with the “X-“ prefix. The following table shows the list of the

EHLO responses from two different servers.

Exchange 2003 Postfix
250-TURN

250-SIZE

250-ETRN

250-PIPELINING

250-DSN

250-ENHANCEDSTATUSCODES

250-8bitmime

250-BINARYMIME

250-CHUNKING

250-VRFY

250-X-EXPS GSSAPI NTLM LOGIN

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 31

250-X-EXPS=LOGIN

250-AUTH GSSAPI NTLM LOGIN

250-AUTH=LOGIN

250-X-LINK2STATE

250-XEXCH50

250 OK

Table 1. EHLO responses in Exchange 2003 and Postfix

4. Several old and problematic commands become obsolete and even forbidden to

increase the MTA security.

Appendix F. Deprecated Features of RFC 281.

[...]

F.1 TURN. The SMTP Client cannot force the SMTP Server to change its

role.

F.2 SOURCE ROUTING. The MAIL FROM and RCPT TO feature that allowed MTA

servers to become open-relays is forbidden, the new syntax includes only

the sender and recipient mailboxes.

F.3 HELO. It is recommended to use only EHLO, even every MTA must

continue to respond to the HELO command for legacy implementations.

F.4 #-literals. RFC 821 allowed a mailbox to be described as a sequence

of numbers separated by dots and preceded by the "#" symbol. This syntax

become obsolete by this RFC.

F.5 DATES AND YEARS. Dates must be composed by four digits. Using only

two digits becomes obsolete.

F.6 SENDING VERSUS MAILING. The SEND, SAML and SOML commands become

obsolete and should not be used anymore.

5. Terminology. SMTP Client and SMTP Servers will be referenced from now on as MTA

(Mail Transfer Agent), given the fact that any of these devices may have both roles. Those

devices or applications that allow an end user to create / receive email is known as a Mail

User Agent (MUA or just UA).

6. Codification. In spite of the protocol being very strict on the exclusive use of ASCII

characters on any email transaction, it is allowed now the character codification in order

to send character sets different to the US-ASCII in MIME format.

7. The strict use of FQDN.

2.3.5 Domain

...The domain name, as described in this document and in [22], is the

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 32

 entire, fully-qualified name (often referred to as an "FQDN"). A

 domain name that is not in FQDN form is no more than a local alias.

 Local aliases MUST NOT appear in any SMTP transaction....

At this point is worth mentioning that the use the use of a domain name in the

HELO/EHLO/MAIL/RCPT commands, requires for such name to be a complete FQDN. The

following examples shows situations in some Exchange and Postfix versions that do not

check this condition by default. This condition may result in problems like mail tracing,

attack identification or even unexpected results because some mail servers will try to auto

complete these parts with its own.

EHLO a

250 hub.rskala.com Hello [192.168.0.89]

MAIL FROM:<a>

250 2.1.0 Sender OK

RCPT TO:<a>

250 2.1.5 a@rskala.com

8. Sizes and timeouts. Any MTA must process emails that satisfy at least the following

sizes. Any MTA will be able to send email that exceed these limits but it should be

prepared to get the mail rejected by the SMTP Server in case this one is not able to

process it.

 4.5.3.1 Size limits and minimums

local-part

 The maximum total length of a user name or other local-part is 64

characters.

domain

 The maximum total length of a domain name or number is 255 characters.

path

 The maximum total length of a reverse-path or forward-path is 256

characters (including the punctuation and element separators).

command line

 The maximum total length of a command line including the command word

and the <CRLF> is 512 characters. SMTP extensions may be used to increase

this limit.

reply line

 The maximum total length of a reply line including the reply code and

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 33

the <CRLF> is 512 characters. More information may be conveyed through

multiple-line replies.

text line

 The maximum total length of a text line including the <CRLF> is 1000

characters (not counting the leading dot duplicated for transparency).

message content

 The maximum total length of a message content (including any message

headers as well as the message body) MUST BE at least 64K octets. SMTP

server systems that must impose restrictions SHOULD implement the "SIZE"

 service extension [18], and SMTP client systems that will send large

messages SHOULD utilize it when possible.

recipients buffer

 The minimum total number of recipients that must be buffered is 100

recipients. Rejection of messages (for excessive recipients) with fewer

than 100 RCPT commands is a violation of this specification.

 The general principle that relaying SMTP servers MUST NOT, and

delivery SMTP servers SHOULD NOT, perform validation tests on message

headers suggests that rejecting a message based on the total number of

recipients shown in header fields is to be discouraged. A server which

imposes a limit on the number of recipients MUST behave in an orderly

fashion, such as to reject additional addresses over its limit rather

than silently discarding addresses previously accepted. A client that

needs to deliver a message containing over 100 RCPT commands SHOULD be

prepared to transmit in 100-recipient "chunks" if the server declines to

accept more than 100 recipients in a single message.

 Errors due to exceeding these limits may be reported by using the

 reply codes. Some examples of reply codes are:

 500 Line too long.

 or

 501 Path too long

 or

 452 Too many recipients (see below)

 or

 552 Too much mail data.

 RFC 821 [30] incorrectly listed the error where an SMTP server

 exhausts its implementation limit on the number of RCPT commands

 ("too many recipients") as having reply code 552. The correct reply

 code for this condition is 452. Clients SHOULD treat a 552 code in

 this case as a temporary, rather than permanent, failure so the logic

 below works.

 When a conforming SMTP server encounters this condition, it has at

 least 100 successful RCPT commands in its recipients buffer. If the

 server is able to accept the message, then at least these 100

 addresses will be removed from the SMTP client′s queue. When the

 client attempts retransmission of those addresses which received 452

 responses, at least 100 of these will be able to fit in the SMTP

 server′s recipients buffer. Each retransmission attempt which is

http://tools.ietf.org/html/rfc821
http://tools.ietf.org/html/rfc2821#ref-30

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 34

 able to deliver anything will be able to dispose of at least 100 of

 these recipients.

 If an SMTP server has an implementation limit on the number of RCPT

 commands and this limit is exhausted, it MUST use a response code of

 452 (but the client SHOULD also be prepared for a 552, as noted

 above). If the server has a configured site-policy limitation on the

 number of RCPT commands, it MAY instead use a 5XX response code.

 This would be most appropriate if the policy limitation was intended

 to apply if the total recipient count for a particular message body

 were enforced even if that message body was sent in multiple mail

 transactions.

This last definition may be a little confusing because it states that all MTA servers should
limit the RCPT commands to at least 100 recipients, however, at the end of the text allows
the reception of mails that overpass this limit. To make this explanation clearer we’ll show
here an example of a server that limits the number of recipients to two and we’ll send a
message to five. As a result you’ll see how this text is implemented in real life scenarios.

For this example let’s configure a Postfix server to limit the number of recipients to only
two by executing the following command:

postconf –e smtpd_recipient_limit=2

postfix reload

Now let’s send a mail with 5 recipients. In order for this rule to apply, the SMTP Client will
have re-send the original mail in three copies to maintain the rule that a single mail should
only have two recipients. The following lines show the SMTP conversation when the mail
is received by Postfix for the first time.

MAIL FROM:<user@domain.com> SIZE=2187

250 2.1.0 Ok

RCPT TO:<user1@rskala.com>

250 2.1.5 Ok

RCPT TO:<user2@rskala.com>

250 2.1.5 Ok

RCPT TO:<user3@rskala.com>

452 4.5.3 Error: too many recipients

RCPT TO:<user4@rskala.com>

452 4.5.3 Error: too many recipients

RCPT TO:<user5@rskala.com>

452 4.5.3 Error: too many recipients

DATA

From this conversation we can see the first two RCPT commands being successfully
accepted with a status code 250 and therefore, this mail will be delivered to the first two
recipients. If we continue to see the packet capture we’ll see the following lines:

250 2.0.0 Ok: queued as 9D579C70453

MAIL FROM:<user@domain.com> SIZE=2187

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 35

250 2.1.0 Ok

RCPT TO:<user3@rskala.com>

250 2.1.5 Ok

RCPT TO:<user4@rskala.com>

250 2.1.5 Ok

RCPT TO:<user5@rskala.com>

452 4.5.3 Error: too many recipients

DATA

The first line just confirms that Postfix has accepted responsibility for delivering this mail
to the first two recipients. Instead of closing the SMTP session, our SMTP Client starts a
new message transfer operation to deliver the same mail for the remaining users 3, 4 and
5. You can see that now user5 gets rejected again with a status code “452 4.5.3 Error: too
many recipients”. Because of this, user5 will have to wait for a third try as we see in the
final section of the capture.

250 2.0.0 Ok: queued as A2ACEC7045C

MAIL FROM:<user@domain.com> SIZE=2187

250 2.1.0 Ok

RCPT TO:<user5@rskala.com>

250 2.1.5 Ok

DATA

At this point we have confirmed that three exact copies of the same mail have been
generated to successfully deliver the mail to the five original recipients. If we check the
Message-ID header of all these mails we can confirm that all of them are in effect the
same mail. This confirms that in order to comply with this section of the RFC our SMTP
Client had to triplicate the same message.

User1: Message-ID: <1C6DA6E388B1184BABFC02524413B32037C6>

User2: Message-ID: <1C6DA6E388B1184BABFC02524413B32037C6>

User3: Message-ID: <1C6DA6E388B1184BABFC02524413B32037C6>

User4: Message-ID: <1C6DA6E388B1184BABFC02524413B32037C6>

User5: Message-ID: <1C6DA6E388B1184BABFC02524413B32037C6>

Now that we have confirmed that this rule actually takes place when delivering mail in
these conditions we’ll try to explain why the RFC demands this kind of behavior.

When we talk about the mail responsibility in both RFC 821 and 2821, it is defined that an
SMTP Server should start storing all the RCPT commands that have been already
successfully accepted in an internal buffer. In our example this implies that the first time
when we tried to deliver the mail for all five recipients, at least both of them had already
been successfully accepted and therefore there’s no reason why this two recipients should
not receive the said mail, remember that they are already saved in the internal buffer! The
note on this section clearly states that mail servers that either send or receive mail
shouldn’t reject a mail based on the number of recipients that appear on the header
section because by that time the mail has already been accepted for those recipients.
Because of this logic, the first two recipients should receive the mail.

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 36

The note also states that when a RCPT command is rejected for exceeding the recipient
limit, a temporary error code should be used and not a permanent one. This condition
causes the SMTP Client to queue the original copy for the remaining recipients until it can
successfully send the mail to all recipients.

RFC821(Limit to the number of recipients)

4.5.3. SIZES

 Recipients buffer

 The maximum total number of recipients that must be buffered is

 100 recipients. Errors due to exceeding these limits may be

 reported by using the reply codes, for example:

 500 Line too long.

 501 Path too long

 552 Too many recipients.

 552 Too much mail data.

This is the original text that was deprecated by RFC 2821. The problem with this definition
is that by reporting a permanent error (5XX) the rejected mailboxes would never receive a
copy of the mail which is incoherent, because at least the first two recipients (in our
example) would be able to receive the original mail. Because of this, RFC 2821 no
redefines the response as temporal and not permanent.

As you can see, as an implicit result of all this, one single mail could appear as duplicated
several times in the mail server logs, but at least, by knowing this basic principle will help
you understand that this is not actually a problem but an expected condition. As an
advice, don’t impose a recipient limit at the SMTP level, if you must enforce such a policy
then do it at a policy level using either your mail server or your anti-spam solution.

4.5.3.2 Timeouts

Initial 220 Message: 5 minutes

MAIL Command: 5 minutes

RCPT Command: 5 minutes

DATA Command: 2 minutes

DATA Block: 3 minutes

DATA Termination: 10 minutes.

9. Re-Sending the mail. The SMTP Client should implement the proper mechanisms to re-

send the mail that could not be delivered because of a 4XX code error. The minimum

waiting period for retransmission should be of at least 30 minutes and the MTA should try

this operation for a period between 4 to 5 days.

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 37

 The sender MUST delay retrying a particular destination after one

 attempt has failed. In general, the retry interval SHOULD be at

 least 30 minutes; however, more sophisticated and variable strategies

 will be beneficial when the SMTP client can determine the reason for

 non-delivery. Retries continue until the message is transmitted or the

 sender gives up; the give-up time generally needs to be at least 4-5

 days. The parameters to the retry algorithm MUST be configurable.

This definition implies that whenever an SMTP Client is not able to deliver a mail because

of transient error 4XX, the server must queue the mail and retry the delivery later for

period between 4 to 5 days but this can be modified. According to this definition, when a

permanent error code 5XX is received, the mail MUST NOT be queued, instead, a no-

delivery notification should be sent using as the recipient the mailbox received in the MAIL

command.

10. Address Resolution. Every time the SMTP Client identifies the domain to which it

should deliver mail, the first step should be the MX RR resolution in order to obtain the

SMTP Server IP (TYPE A). Nevertheless, there might be some situations where the MX

record is not present on the DNS definition or it may be wrongly defined. In such

situations there are alternative solutions that might be implemented, however these

situations may result in other kind of errors, and for this reason it is always recommended

that the MX record be always defined following these guidelines:

 The names are expected to be fully-qualified domain names (FQDNs):

 mechanisms for inferring FQDNs from partial names or local aliases

 are outside of this specification and, due to a history of problems,

 are generally discouraged. The lookup first attempts to locate an MX

 record associated with the name. If a CNAME record is found instead,

 the resulting name is processed as if it were the initial name. If

 no MX records are found, but an A RR is found, the A RR is treated as

 if it was associated with an implicit MX RR, with a preference of 0,

 pointing to that host. If one or more MX RRs are found for a given

 name, SMTP systems MUST NOT utilize any A RRs associated with that

 name unless they are located using the MX RRs; the "implicit MX" rule

 above applies only if there are no MX records present. If MX records

 are present, but none of them are usable, this situation MUST be

 reported as an error.

Once the MTA has the MX record list ordered by priority, the appropriate record should

be chosen in order to obtain the corresponding IP Address. Whenever more than one type

A record is found for the same MX record, the proper mail server will be chosen randomly.

If more than one MX record is found with the same priority, the appropriate record will be

chosen randomly using the round-robbin algorithm.

Chapter 2. The SMTP Structure www.redinskala.com

The SMTP Standards 38

11. Notifications and responsibilities. From the moment the SMTP Server responds with a

250 code to the mail body closure, it has the full responsibility for that mail delivery. If an

error has occurred and the SMTP Server responds with an error to the DATA command,

the responsibility for delivering that mail remains on the SMTP Client, which will be forced

to internally queue the mail and retry the transmission in another moment, or notify the

original sender using the return-path mailbox. All notifications must use the NULL mailbox

"<>" as the sender, this way the SMTP Server knows this mail is in fact a notification and

not a mail sent by a user. Every time an MTA receives a mail with a null sender "<>" it

must not respond with a notification in case such mail cannot be delivered as well, this

behavior prevents loops between MTA Servers.

2.1.3. RFC 5321

In October 2008 the last and most recent revision to the SMTP Protocol was made. This is

still a draft RFC. Even when it doesn′t include any vital modifications, it offers a more

comprehensive explanation on some sections like relay and the right use of file transfers

using MIME types.

Along with this RFC, the 5322 was also published in order to update the structure of the

IMF (Internet Message Format). This revision offers several modification that improve the

usage of IMF on other protocols like DKIM.

The RFC documents give us the knowledge we need to interpret and analyze the data

transmission through SMTP Protocol, the format they must obey, the order every mail

part must be in and the function of all the commands used in the SMTP conversation.

Nevertheless, this information cannot be contained in a single RFC document. If we are to

study the full operation of the protocol, we must study other RFC documents to complete

this knowledge.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 39

2.2. Email Structure
For the digital information contained in any email to be transferred among MTA servers,

the rules provided in several standards must be followed. Any non compliant mail is at risk

of being rejected by a more strict MTA server.

To begin the email analysis, we’ll divide this section as follows:

1. Handshake

2. Envelope

3. Headers

4. Body

5. Attachments

6. Reply/Error Codes

2.2.1. Handshake

The first process that takes place when sending an email has to do with the process to

establish communication between the SMTP Client and the SMTP Server. This process

starts from the moment the SMTP Client has a new mail that has to be transmitted. In

order to do this, the SMTP Client first identifies which is the domain the mail should go to

and to determine this, it queries its DNS Server for the corresponding MX registries.

You can see this phase in the next picture where an MTA has a new mail and wants to

obtain the server information for the hotmail domain.

Image 3. Single MX record resolution

In this capture we can identify the following main items:

1. A DNS query has been made for the MX resource belonging to the hotmail.com

domain.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 40

2. The DNS server searches its own entries until it finds the requested resource and

answers with resource found for the hotmail.com domain. Note that if the

hotmail.com were not to be local to the DNS, then it should forward the query to

another DNS server until it finds the corresponding or declare it as non-existent.

3. As an additional record, the DNS also sends the A record for the MX server found

in the previous step, this way the MTA will have both records at once. Note that

this is not always the case as some DNS responses include on the MX record and a

second one must be made to obtain the A record.

In this case, it is very easy to manage this information because there is only one MX record

and there is only one IP related to it. But in cases where the mail infrastructure is much

bigger, this resolution is not that simple. Let’s suppose now that we have more than one

MX records for the same domain as shown in the following image.

Image 4. Multiple MX records resolution

In this case, we can see the number of answers and additional records grows up to 4 on

steps 2 and 3. This situation occurs when the organization that owns the domain has more

than one single server to receive mail from the Internet, which gives them more

bandwidth to receive more mails, or will allow them to have High Availability

infrastructure where more than one server are available to keep receiving mail when

another fails.

For this scenarios to work correctly, it is necessary to define the MX resolution priority.

From the las answer we can see that there are 5 mail servers and each of them has

different priorities (5, 10, 20, 30 and 40) being the highest the one with the lowest

number (5 in this example). This means that whenever we want to send mail for the

domain gmail.com, the mail server that will receive our mail will be:

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 41

gmail-smtp-in.l.google.com with a priority of 5

If this server fails, then the next server to contact will be:

alt1.gmail-smtp-in.l.google.com with a priority of 10

And so on until there are no more servers left, in which case the process will start with the

highest priority again. Now, what happens when there are more than one record with the

same priority? The following image shows the zone for the hotmail.com domain where

you can see two records with the same priority.

Image 5. Definition for MX records with the same priority

 Here you can see both MX records with the same priority of [10] (tmw3k01.hotmail.com

and mx1.hotmail.com). For each MX record there must be an associated A record.

Now let’s see how the resolution takes place when you try to send a mail for this domain:

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 42

Image 6. Resolution of two MX records with the same priority

In the DNS resolution process we can see that both MX records alternate on every

resolution that takes place on the DNS, however this doesn′t mean that the MTA will

follow this order just as we can appreciate on the next image.

Image 7. Email delivery for two MX records with the same priority

As we can see, the four mails are sent to the same MTA (tmw3k01.hotmail.com). This

means that when you use the DNS as your balancer, the balance itself doesn′t take place

as one would assume (one mail for one record, and the next mail to the next record).

What actually happens is that the DNS is trying to advice the MTA to choose the records

alternatively but the MTA will have the final word when choosing the next record. If you

really want a load balancing to take place on your organization you should not use DNS

balancing, use a load balancer instead.

Now, for our next example, what happens when the server with the highest priority is

down? Let’s check out the next TCP capture so we can identify the way an MTA reacts

under this circumstances.

Jesús Razo

Jesús Razo

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 43

Image 8. MX record resolution when the highest priority is down

In this capture we can see there are two different priorities:

MX 5 tmw3k01.hotmail.com

MX 10 mx.hotmail.com

According to the SMTP protocol rules, the mail should be delivered to the server with the

highest priority (in this example [5]) but from the capture we can see the mail is actually

going to the second MX record 65.55.92.184. This is because the IP 192.168.75.76 is not

responding to the TCP handshake as you can see in the gray row of the capture. Because

the IP is unresponsive and the MTA cannot start a TCP connection to port 25, the MTA

now reuses the information obtained previously from the DNS Server and changes to the

next priority [10].

It is worth mentioning that the way an MTA chooses to change between servers of

different priorities occurs only if the actual MX server is not responsive on the TCP port

25. If the port is up but the MTA application or the server itself is unresponsive, then the

change won′t take place and the SMTP Client will queue the mail to try and deliver it later.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 44

Another way to have a High Availability infrastructure when you have more than one mail

server is to associate several A records to the same host. This will force the MTA to choose

one using the Round-Robbin algorithm. If the chosen IP is responsive on TCP Port 25, then

the connection will take place, otherwise, the MTA will again choose another IP using the

same algorithm until it finds one that responds to the TCP handshake on port 25.

Image 9. MX record with two different IP associated addresses

Another scenario included in RFC 2821 to establish a connection between MTA servers is

the absence of the MX record but the existence of a CNAME or A record.

Image 10. Definition of a CNAME record

When we try to send a mail to our private gmail.com zone we see the DNS resolution

responds now with the CNAME record just as expected by the RFC definition.

Image 11. CNAME resolution when no MX record is associated with the domain

The last condition is the absence of both the MX and CNAME records, in such a case the

last try is to obtain an A record. Our test zone has now only this record to confirm this

behavior.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 45

Image 12. Domain definition with only an A record

When the resolution is performed, the result is as expected. In this case our MTA will try

to deliver mail to the A record. You must note here, that in real life there are some

domains that no longer host an MX record but they do have an A record for their website,

in these cases mail will remain queued trying to deliver mail to this server.

Image 13. A record resolution when no MX record is associated with the domain

At this point, the MTA should be ready to open and receive connections on port 25 and

accept mails from other SMTP Clients. The next step will involve the handshake between

both MTA servers at an SMTP level.

This Handshake is composed from both servers’ hostnames (FQDN). The SMTP Server is

the first to start the conversation by presenting the following line:

220 [SMTP_Server_FQDN] [SMTP_Version_And_Other_Info]

[220] This is the SMTP code that tells the SMTP Client that it may now start sending

commands. The description that follows the numeric code is just for human reading and is

never interpreted by the machines. It is worth mentioning that even the SMTP RFC states

that at this point the SMTP Server should identify itself with both its FQDN and SMTP

version, it is now allowed to skip this information if it involves a security issue on your

organization.

The SMTP Client should always start the communication by introducing itself with one of

the following commands:

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 46

HELO: This command is only used when the SMTP Client has only SMTP capabilities and is

defined by the RFC 821 document. This is now deprecated and should not be used on

actual conversations.

EHLO: This is the documented command on RFC 2821 and 5321 for ESMTP in order to take

advantage of the new characteristics of the protocol and is the one that should be used in

all SMTP communications.

The following screenshots show the difference between both commands.

Image 14. HELO Response

Image 15. EHLO Response

After accepting the greeting, the SMTP Server responds with a 250 status code in which it

identifies itself with its own FQDN. The line usually contains “Hello *IP+ where the IP is the

one from the SMTP Client.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 47

The main objective of these operations is to allow both SMTP Server and Client to have

tracing info from the mail transaction and to perform troubleshooting when needed. The

IP and name from the SMTP Client will be registered in the mail headers under the

Received header which should be added at the beginning of any other existing Received

header.

Received: from hub.rskala.com (unknown [192.168.0.89])

 by hub2.rskala.com (Postfix) with ESMTP id 9E08E900418

 for <user@rskala.com>; Mon, 27 Sep 2010 21:50:26 -0500 (CDT)

If you wish to verify the IP reputation of the SMTP Client you should implement such

methods at this point.

2.2.2. Envelope

Now that the Handshake has been established and both SMTP Client and Server had

agreed to start an SMTP session, the responsibility to send the transmission commands

belongs to the SMTP Client while the SMTP Server will be responsible of answering to

each of them with the corresponding status codes.

The next section to transmit is the Envelope, which is used by SMTP Server to have

enough information about to whom the message should be delivered to and to know to

whom a notification should be sent in case the transmission fails. The fields that define

the header are called:

1. Forward-Path: This is the address or addresses intended for delivery. These are

actually the recipients’ mailboxes.

2. Reverse-Path: This is the email address that can be used to send a notification in

case the mail transmission fails. This is actually the sender′s mailbox.

RFC 821 defined these fields for the first time. The associated commands had the capacity

to define the complete route the mail should follow to reach its final destination. These

commands are:

 MAIL: Establishes the return path in case the mail could not be delivered to the

intended recipients. It accepts the FROM word as its only parameter. The complete

syntax is defined in RFC 821 as: MAIL FROM:<@relay,@relay2:user@domain>.

Where the first parameters are the MTA servers the mail should pass through to

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 48

reach its destination. This syntax is now obsolete and even prohibited by RFC 2821

and 5321 because it opens a security hole given the fact that all MTA servers

should be configured as open relays, this means, accepting mail on behalf of

another server. Even though this syntax is still accepted by an MTA it is not

implemented when the mail is sent. The right syntax is just MAIL

FROM:<user@domain>.

 RCPT: Establishes the path that should be used to deliver the mail. Here you should

put all the recipient addresses. It accepts the word "TO" as its only parameter. Its

syntax was defined by RFC 821 as: RCPT TO:<@relay1,@relay2:user@domain>.

Where the first two parameters, as in the MAIL command, are now obsolete for

the same reason. RFC 2821 defines the official syntax as RCPT TO:<user@domain>,

and this line should be repeated for every recipient. It is not allowed to put more

than one recipient on the same line. The domains that appear on these lines are

the ones used by the SMTP Client to resolve the MX records of the corresponding

domains.

After the HELO/EHLO has been accepted, the SMTP Server waits for the MAIL command to

start opening a buffer for the new envelope. An envelope can only contain one MAIL

command, if this is repeated again, the SMTP Server should answer with an error code,

telling the SMTP Client that it is nesting mails.

MAIL FROM:<user@rskala.com>

250 2.1.0 user@rskala.com....Sender OK

MAIL FROM:<user2@rskala.com>

503 5.5.2 Sender already specified

If you are to validate or create rules about the sender information, this is the right point to

implement them. If there was any mistake when sending the mail commands you can

always clear the buffer by sending the EHLO/HELO command again or by sending the RSET

command.

After the MAIL command you should send the RCPT command. This can be repeated as

many times as needed by the number of recipients, always sending one mailbox on each

line. At this point a new Internal ID is generated specific for this mail. The envelope will

continue to store the RCPT fields until you are finished with your recipient list. This

happens when you send the DATA command. When a SMTP Client sends the DATA

command, the envelope is closed and a new buffer is opened to received the mail content

identified by the Internal ID. If you are to validate or create rules for your recipients, this is

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 49

the point where you should implement them.

The information of the MAIL command is transferred by the MTA to the headers using the

header name:

Return-Path

The information of the RCPT command is not stored on any header so this info will be lost

once the mail has been processed. To make a Reply / Forward of the mail, the information

of the To and CC headers is used to fill the corresponding mailbox addresses.

2.2.2.1. SIZE

As part of the SMTP extension, it is now allowed to use a new parameter that helps to

identify if the mail meets the size requirements accepted by your SMTP Server. This

parameter is SIZE and its syntax is described below:

MAIL FROM:<user@domain> SIZE=size

Where SIZE is the approximate mail size in bytes

This parameter helps MTA servers to make previous validation of the mail size. Its

implementation is described in RFC 1870 that establishes the following conditions:

6.2 Client action on receiving response to extended MAIL command

The client, upon receiving the server′s response to the extended

MAIL command, acts as follows:

 (1) If the code "452 insufficient system storage" is returned, the

 client should next send either a RSET command (if it wishes to

 attempt to send other messages) or a QUIT command. The client

 should then repeat the attempt to send the message to the server

 at a later time.

 (2) If the code "552 message exceeds fixed maximum message size" is

 received, the client should immediately send either a RSET command

 (if it wishes to attempt to send additional messages), or a QUIT

 command. The client should then declare the message undeliverable

 and return appropriate notification to the sender (if a sender

 address was present in the MAIL command).

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 50

A successful (250) reply code in response to the extended MAIL

command does not constitute an absolute guarantee that the

message transfer will succeed. SMTP clients using the extended

MAIL command must still be prepared to handle both temporary and

permanent error reply codes (including codes 452 and 552),

either immediately after issuing the DATA command, or after

transfer of the message.

When this method is implemented by the SMTP Server, the EHLO greeting should specify

the acceptable mail size. This helps the SMTP Client to decide whether to continue or

abort the transmission.

220 tmcent01.training5.tm ESMTP Postfix

ehlo me.com

250-tmcent01.training5.tm

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

Because this parameter is optional, the MTA servers may choose to not implement it by

leaving the SIZE parameter blank or not to present it at all in the greeting. This size is only

an approach as the final size should also consider the size of the commands like ".",

<CRLF> and any other character involved in the mail transmission. Any MTA server that

accepts a mail because the SIZE of the final mail was lower than its threshold can still

reject the mail because of other reasons like hard disk space.

To confirm this process you can connect to any mail server and send the EHLO command,

if it has a limit you’ll see it in the mechanisms list. You should note that you MUST use

EHLO, otherwise you’ll not be able to know what the SIZE limit is.

250-SIZE 10240000

This response indicates this server can only accept mails with a size of 10MB or less. Any

bigger mail will get rejected as shown in the following example:

MAIL FROM:<user@domain.com> SIZE=888888888888888

552 5.3.4 Message size exceeds file system imposed limit

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 51

If the mail has an acceptable size then the SMTP conversation can continue.

MAIL FROM:<user@dominio.com> size=888

250 2.1.0 Ok

If there’s no specific number for the SIZE parameter as shown in the following line, it

means that server hasn’t impose any limit on the mail sizes it can accept.

250-SIZE

In such case, even the following MAIL will be accepted:

MAIL FROM:<user@domain.com> SIZE=9999999999999999999

250 2.1.0 user@domain.com....Sender OK

A normal MTA server will react according to this definition, however, any attacker can

take advantage of this behavior and use a script or manually send a mail to bypass this

kind of restrictions by sending a SIZE parameter with a smaller size. It is advisable to

configure this parameter on all MTA servers for the SMTP Clients to validate if they can

send specific mails or abort the operation on time without wasting resources on both

sides. For those cases when the mail comes from an attacker, it is advisable to configure a

content filter rule that calculates the actual size of the mail and apply the corresponding

actions before delivering the mail. The disadvantage of this kind of filters is that you need

to receive the whole mail but it does really worth it if you want to control mail sizes.

2.2.2.2. DSN-RCPT-NOTIFY

RFC 3461 gives the possibility to extend SMTP protocol by adding the NOTIFY method in

order to establish the conditions for a DSN (Delivery Status Notification) to be sent. This

makes the protocol more flexible because it can now control when and what to notify the

sender when a certain condition is met.

It was a definition from RFC 821 that when a mail cannot be delivered to final recipient, a

notification should be sent to the original sender to let him know an error had occurred.

However this kind of notifications didn′t specify the reason that caused the DSN to be

sent. With the NOTIFY method we can request a notification for the following conditions:

 RCPT TO:<user@domain> NOTIFY=NEVER. Establishes that under no circumstance

a notification should be returned to the sender, not even when the mail delivery

was unsuccessful.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 52

 RCPT TO:<user@domain> NOTIFY=SUCCESS. Establishes that a notification must be

sent to the sender when the delivery is successful.

 RCPT TO:<user@domain> NOTIFY=FAILURE. Establishes that a notification must be

sent to the sender when the delivery has failed.

 RCPT TO:<user@domain> NOTIFY=DELAY. Establishes that a notification must sent

to the sender when the delivery of the mail is delayed. It is recommended not to

use this parameter because there might be several reasons for a delay to occur

and the sender might misunderstand this kind of notifications as an actual error.

The NEVER parameter, if used, must appear as the only parameter of the NOTIFY method.

The rest might appear in a list format separated by comma. This is why this method gives

complete control about the state of the mail on any condition. You just have to be careful

in not overloading your network with unnecessary mails.

It′s worth noting that this parameters can be defined for one or all the recipients, and you

can even alternate different types of notifications for each recipient on the same mail.

NOTE: You have to understand the delivery of the mail as the process when the mail is

successfully delivered to the recipient mailbox in the domain that corresponds, or when

the mail has been delivered directly to the User Agent (MUA of the recipient).

To confirm how this works, let’s send a mail using the command line with the required

parameters as shown in the following example.

MAIL FROM:<user@domain.com>

250 2.1.0 Sender OK

RCPT TO:<user@rskala.com> NOTIFY=SUCCESS

250 2.1.5 Recipient OK

DATA

354 Start mail input; end with <CRLF>.<CRLF>

.

250 2.6.0 <8891b431-21ec-4a6c-96a5-6c0203e21f0e> Queued mail for delivery

As soon as the mail is accepted by the MTA server you obtain an answer in your mailbox

indicating the SUCCESS operation.

Your message

 To: Undisclosed recipients
 Subject:
 Sent: 9/17/2013 8:34 PM

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 53

was delivered to the following recipient(s):

 user@rskala.com on 9/17/2013 8:34 PM

The following example shows how to use the FAILURE notification option:

MAIL FROM:<user@domain.com>

250 2.1.0 Sender OK

RCPT TO:<asdfasfd@rskala.com> NOTIFY=FAILURE

250 2.1.5 Recipient OK

data

354 Start mail input; end with <CRLF>.<CRLF>

.

250 2.6.0 <ef6cf1a7-79a0-487e-96da-1d8f78e067b2> Queued mail for delivery

Because this mailbox doesn’t really exist, a failure notification will be sent as shown

below:

Your message did not reach some or all of the intended recipients.

 Subject:
 Sent: 9/17/2013 8:40 PM

The following recipient(s) could not be reached:

 asdfasfd@rskala.com on 9/17/2012 8:40 PM
 The e-mail account does not exist at the organization this message was sent to. Check the e-mail address, or
contact the recipient directly to find out the correct address.
 <rskala.com #5.1.1 smtp;550 5.1.1 RESOLVER.ADR.RecipNotFound; not found>

When using the NEVER parameter you’re indicating that no matter the delivery result

(success or failure) a notification must not be sent. DELAY only means you want to receive

a notification whenever a situation exists on any of the MTA servers that will not allow the

mail to be received in the first delivery try.

2.2.2.3. DSN-RCPT-ORCPT

This method, specified by RFC 3461, allows the DSN to have the original mailbox of the

recipient (OriginalRecCiPienT) in those circumstances where the mailbox address in the

RCPT TO command should be modified for any reason. Some reasons where this field can

be used is when you receive mails from systems that use different standards like X.400

where the codification is not the same as defined by RFC 5321. Other situation is when

there is a distribution list in the RCPT TO command and this must be modified to generate

a RCPT TO that matches every mailbox address that compose the list, in this case the

ORCPT field should match the new mailbox address as well.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 54

The ORCPT field SHOULD ALWAYS match the mailbox specified by the RCPT command and

in such a case that it has been received by an SMTP Relay, it should transfer the same field

as received from the previous SMTP Client. In case this field doesn′t exist, any MTA server

is allowed to modify the mail transfer to incorporate it by copying the RCPT address and

code it with the RFC 822 standard (xtext).

The right syntax is:

RCPT TO:<user@domain> ORCPT=rfc822;user@domain

When a DSN is generated and if the ORCPT field exists, this mailbox address should be

used to let the sender know what notification it is referred to.

2.2.2.4. DSN-MAIL-RET

This method is used with the MAIL command and it is used to specify how the original

mail should return to the sender in case of failure. The MTA servers that implement this

method and those that were RFC 821 compliant would only sent the headers of the

original mail, but this method allows the complete message to be sent. Its implementation

is done by using the following syntax:

 MAIL FROM:<user@domain> RET=FULL. With this parameter we indicate the SMTP

Server that in case a DSN is to be sent, this must include the complete mail in the

notification.

 MAIL FROM:<user@domain> RET=HDRS. With this parameter we indicate the

SMTP Server that in case a DSN is to be sent, this must include only the headers of

the original mail.

If the RET parameter doesn′t exists, the MTA server is allowed to return only the headers

of the original mail, although this can be configured in the MTA.

2.2.2.5. DSN-MAIL-ENVID

The ENVID (Envelope ID) method is used to add a Message-ID to the DSN notification. This

will help in tracing the mail that originated the DSN. In those cases where you don′t want

to receive the headers or the full mail, this information will be helpful because the DSN

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 55

will return the original Message-ID of the original mail. This helps to trace a mail in an easy

and fast way.

If it is not implemented, no information about the ID will be returned by the MTA that

originates the DSN.

The syntax for this mechanism is:

MAIL FROM:<user@domain> ENVID=<Envelope_ID>

Where Envelope_ID is any alphanumeric ID

When used, you’ll receive a line called “Original-Envelope-Id” that contains the Envelope-

ID value in the ENVID method as shown below:

Original-Envelope-Id: 12345

Reporting-MTA: dns;hub.rskala.com

Received-From-MTA: dns;rskala.com

Arrival-Date: Tue, 18 Sep 2013 14:59:38 -0500

Final-Recipient: rfc822;user@dominio.com

Action: failed

Status: 5.1.1

This information can be used to trace a mail when the delivery operation has failed.

2.2.2.6. MDN

RFC 3798 establishes the mechanisms for the sender to receive a notification when the

mail has been read. Because this notification requires the user interaction, the method is

NOT IMPLEMENTED IN THE MAIL ENVELOPE. This method is implemented directly in the

mail headers because it requires a header that keeps this information when the mail

transfer has finished.

The right syntax is:

DATA

354 End data with <CR><LF>.<CR><LF>

subject: hello

Disposition-Notification-To:<root@training5.tm>

this is the mail content.

.

250 2.0.0 Ok: queued as 70ACF90040A

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 56

This method requires the mailbox address specified in the Disposition-Notification-To:

header be the same of the MAIL command, if they are different the MTA may decline to

send the notification because an attacker may use this method to bombard not involved

users.

The mail rules to follow when using this method are described below:

2.1. The Disposition-Notification-To Header

 The presence of a Disposition-Notification-To header in a message is

 merely a request for an MDN. The recipients′ user agents are always

 free to silently ignore such a request. Alternatively, an explicit

 denial of the request for information about the disposition of the

 message may be sent using the "denied" disposition in an MDN.

 An MDN MUST NOT itself have a Disposition-Notification-To header. An

 MDN MUST NOT be generated in response to an MDN.

 A user agent MUST NOT issue more than one MDN on behalf of each

 particular recipient. That is, once an MDN has been issued on behalf

 of a recipient, no further MDNs may be issued on behalf of that

 recipient, even if another disposition is performed on the message.

 However, if a message is forwarded, an MDN may have been issued for

 the recipient doing the forwarding and the recipient of the forwarded

 message may also cause an MDN to be generated.

 While Internet standards normally do not specify the behavior of user

 interfaces, it is strongly recommended that the user agent obtain the

 user′s consent before sending an MDN. This consent could be obtained

 for each message through some sort of prompt or dialog box, or

 globally through the user′s setting of a preference. The user might

 also indicate globally that MDNs are to never be sent or that a

 "denied" MDN is always sent in response to a request for an MDN.

 MDNs SHOULD NOT be sent automatically if the address in the

 Disposition-Notification-To header differs from the address in the

 Return-Path header (see [RFC-MSGFMT]). In this case, confirmation

 from the user SHOULD be obtained, if possible. If obtaining consent

 is not possible (e.g., because the user is not online at the time),

 then an MDN SHOULD NOT be sent.

 Confirmation from the user SHOULD be obtained (or no MDN sent) if

 there is no Return-Path header in the message, or if there is more

 than one distinct address in the Disposition-Notification-To header.

 The comparison of the addresses should be done using only the addr-

 spec (local-part "@" domain) portion, excluding any phrase and route.

 The comparison MUST be case-sensitive for the local-part and case-

 insensitive for the domain part.

 If the message contains more than one Return-Path header, the

 implementation may pick one to use for the comparison, or treat the

http://tools.ietf.org/html/rfc3798#ref-RFC-MSGFMT

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 57

 situation as a failure of the comparison.

 The reason for not automatically sending an MDN if the comparison

 fails or more than one address is specified is to reduce the

 possibility of mail loops and of MDNs being used for mail bombing.

 A message that contains a Disposition-Notification-To header SHOULD

 also contain a Message-ID header as specified in [RFC-MSGFMT]. This

 will permit automatic correlation of MDNs with their original

 messages by user agents.

 If the request for message disposition notifications for some

 recipients and not others is desired, two copies of the message

 should be sent, one with a Disposition-Notification-To header and one

 without. Many of the other headers of the message (e.g., To, Cc)

 will be the same in both copies. The recipients in the respective

 message envelopes determine for whom message disposition

 notifications are requested and for whom they are not. If desired,

 the Message-ID header may be the same in both copies of the message.

 Note that there are other situations (e.g., Bcc) in which it is

 necessary to send multiple copies of a message with slightly

 different headers. The combination of such situations and the need

 to request MDNs for a subset of all recipients may result in more

 than two copies of a message being sent, some with a Disposition-

 Notification-To header and some without.

 Messages posted to newsgroups SHOULD NOT have a Disposition-

 Notification-To header.

An additional way to achieve an MDN is by using the following header:

Return-Receipt-To:<user@domain>

This method is outside the SMTP standards and any MTA server is free to decline to send

an MDN notification.

2.2.3. Headers

When you close the envelope with the DATA command the header section begins. This

section is used to identify relevant information about this mail. This information can be

used to add other data like the date, the mail ID, the MTA servers the mail has passed

through, additional identifiers and others that may just be informative.

According to RFC 5322 about the mail format, there are only two headers that are

mandatory: Date and From. If these do not exist, the MTA server is free to generate them

and integrate them to the final mail. The headers of any mail can be divided in the

http://tools.ietf.org/html/rfc3798#ref-RFC-MSGFMT

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 58

following categories.

2.2.3.1. General rules for headers

In this section we′ll see the general rules that apply to any header used in any mail that is

RFC 5321 and 5322 compliant whether or not the headers are SMTP standard or

extended.

1. According to RFC 5322 there are only two mandatory headers in any mail: From

and Date. This will assure the mail has enough identification information in order

to know who is originating the mail and the date and time in which it was

generated. If these fields are not present, any MTA is free to add them using the

information in the MAIL command for the From header and its local time for the

Date header.

To confirm this definition you can send a mail with no headers and then check

what headers are automatically added by the MTA to be compliant with this rule.

The following mail doesn’t have any headers:

MAIL FROM:<>

RCPT TO:<user@rskala.com>

DATA

.

As a result, we can see an Exchange server delivers this mail with the following

headers:

Microsoft Mail Internet Headers Version 2.0

Received: from hub.rskala.com ([192.168.0.89]) by hub1.rskala.com

with Microsoft SMTPSVC(6.0.3790.3959);

 Tue, 18 Sep 2013 19:07:10 -0500

From: <>

Bcc:

Return-Path: <>

Message-ID: <TMW3K01s43ZRYH6GXDJ00000001@tmw3k01.training2.tm>

X-OriginalArrivalTime: 19 Sep 2013 00:07:12.0073 (UTC)

FILETIME=[B7BF1B90:01CD95FA]

Date: 18 Sep 2012 19:07:13 -0500

If you perform the same test by sending the mail to Postfix, you can see the

following headers:

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 59

X-Original-To: user1

Delivered-To: user1@rskala.com

Date: Tue, 18 Sep 2013 19:24:11 -0500 (CDT)

From: MAILER-DAEMON

To: undisclosed-recipients:;

With this test we verified that even when not added, an MTA will try to add any

required header and of course, both From and Date will always be added no

matter what MTA server you use.

2. You can use comments at any part of the headers using the syntax "(" comment

")". This information is informative only and should not be interpreted by the MTA

server. If any MTA receives comments in this format it SHOULD NOT delete them

or modify them.

The following is an example of a comment:

Received: from mail-pb0-f52.google.com ([209.85.160.52]) by In-MTA

3. The character-set used in all headers is always US-ASCII. RFC 2047 (about the non-

ASCII characters in a MIME mail) allows the use of additional charsets. When there

is no explicit definition about the charset in use, it should be assumed that the

charset is US-ASCII. Any character that doesn′t belong to the US-ASCII charset and

that is not specified by a different charset can be ignored by the MTA server.

This definition implies that any non US-ASCII character can be omitted or its

presentation may be modified by the SMTP Server when performing the final

delivery. To confirm how this mechanism works let’s send the following mail and

then let’s check how it is being showed to the user:

MAIL FROM:<user@domain.com>

RCPT TO:<user@rskala.com>

DATA

From:user1

To:user2

Subject: nos vemos mañana

saludos nos vemos mañana aquí.

.

When you open this mail in an Exchange server, you’ll see something like this:

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 60

from:user1

to:user2

subject: nos vemos ma¤ana

saludos nos vemos ma¤ana aqu¡.

Postfix will show the following:

from:user1

to:user2

subject:nos vemos ma¤ana

saludos nos vemos ma¤ana aqu¡.

With these tests it should be clear by now that any non US-ASCII character will not

get properly interpreted when the mail is presented to final recipient. In these

cases some strange characters will be shown according to the actual ASCII value

the character corresponds to.

4. If non US-ASCII characters are to be used, you have to follow the rules defined by

RFC 2047 that indicates there are two different types of codification: Q (for

Quoted-Printable) and B (for Base64). For example: the sentence “this is the text”

may be coded as “=?iso-8859-1?Q?this is the text?=” which is the same as “=?iso-

8859-1?B? dGhpcyBpcyB0aGUgdGV4dA==?=”.

Some users may think the mail may be malicious when they see this kind of coding.

As we can see here, this is not the case as this method is perfectly legal and its

rules are defined in the RFC. The purpose of the method is to cover the problem

implied in the previous point that forbids the use of non US-ASCII characters when

your language is not included in this charset. If you were to send the last mail you

would have to send something like this.

MAIL FROM:<user@domain.com>

RCPT TO:<user@rskala.com>

DATA

From:user1

To:user2

Subject: =?iso-8859-1?Q?nos_vemos_ma=F1ana?=

MIME-Version: 1.0

Content-Type: text/plain; charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

saludos nos vemos ma=F1ana aqu=ED.

.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 61

You’ll note here that when you code text inside the body you have to use the rules

defined by the MIME format, this will be covered in the following sections. For the

header you can use de “Q” coding as in this example or the “B” (Base64) coding as

shown in the following example:

MAIL FROM:<user@domain.com>

RCPT TO:<user@rskala.com>

DATA

From:user1

To:user2

Subject: =?iso-8859-1?B? bm9zIHZlbW9zIG1h8WFuYQ==?=
MIME-Version: 1.0

Content-Type: text/plain; charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

saludos nos vemos ma=F1ana aqu=ED.

.

In both examples the “ñ” and “í” characters will be correctly presented to the final

recipient.

5. The order in which headers are sent does not affect its implementation. The only

exception is the MIME-Version header which should always appear before any

MIME header.

6. As a general rule no header is case sensitive unless the implementation of a

specific headers specifies it.

2.2.3.2. Date and time Headers

These headers are used at the moment the mail is created.

Header Syntax Description

 Date Date: date-time
Syntax: [day-of-week ","] date time [CFWS]
day-of-week = "Mon" / "Tue" / "Wed" / "Thu" /
 "Fri" / "Sat" / "Sun"
date = [dd] month [yyyy]
month = "Jan" / "Feb" / "Mar" / "Apr" /
 "May" / "Jun" / "Jul" / "Aug" /
 "Sep" / "Oct" / "Nov" / "Dec"
time = time-of-day zone
time-of-day = hour ":" minute [":" second]
zone = ("+" / "-") 4DIGIT

This header indicates the
date and time in which the
mail was created by the
originating MTA. This is the
equivalent to the moment
when the user presses the
Send button, this is why this
field should not be confused
with the time in which the
SMTP Server receives the
mail. If for example, a user

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 62

Header Syntax Description

Example 1:
Date: 12 May 2010 00:00:00 -0500
where:
12 - Day
May – Month with three letters
2010 – Year with four digits
00:00:00 - Hour:Minutes:seconds in 24hrs format
-0500 - Time zone

Example 2:
Date: Mon, 12 May 2010 -0500
where:
Mon – Name of the day with three letters
 separated by comma

creates a new mail but he
hasn’t an Internet
connection at the moment,
the actual time in the mail
will reflect the one when the
user pressed the Send
button and not the time
when it got an Internet
connection to send the mail.

2.2.3.3. Origin Headers

These headers have information about the system / user that originated the mail.

Header Syntax Description

 from From: mailbox

Examples:
From:<user@domain.com>
From: "John
Doe"<johndoe@domain.com>

This field contains the original sender
mailbox address. This should be the
mailbox address of the mail author.

 sender Sender: mailbox

Example:
From:<john@domain.com>
Sender:<chris@domain.com>

This mail will be send as:
From Chris on behalf of John

When a user sends a mail whose
author is a different person, this field
will distinguish both of them in order
for the recipient to know who the real
author is in case he wants to contact
him. For example. If John writes a mail
and asks his assistant Chris to send it.
John will be shown in the FROM
header and Chris in the SENDER field,
when the recipient replies, the
response will be addressed to John, for
he is the real author of the mail. If the

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 63

Header Syntax Description

value of SENDER and FROM is the
same, then it is not necessary for the
SENDER header to appear in the mail.

 reply-
to

 Reply-To: address-list

Example:
From:<john@domain.com>
Reply-To:<john@domain.com>,
<chris@domain.com>

When replying to this mail, the mailbox
addresses that will appear on the To
header will be john@domain.com and
chris@domain.com

This header will provide the mailbox or
mailboxes to which the mail should be
replied to in those situations where it
is necessary to inform the recipient
about the person or list of people to
whose he should reply the mail to and
those people do not appear in the
FROM header.

2.2.3.4. Destination Headers

These headers give information about the mail recipients.

Header Syntax Description

 to To: address-list

Examples:
To:<john@domain.com>
To:<john@domain.com>,
<chris@domain.com>
To:"John Doe"<john@d.co>,
"Chris"<chris@d.co>

This header indicates the mailboxes to
which the mail is addressed to.

 cc Cc: address-list

Example:
To:"John Doe"<john@domain.com>
Cc:"Chris Doe"<chris@domain.com>,
<al@d.co>

In this example John Doe will receive
the mail as the main recipient and
Chris will receive a copy even though
the mail is not directly addressed to
him.

Carbon Copy is a header that is used
when you want to send a copy of the
same mail to other people that are not
directly related or responsible of the
mail topic.

 bcc Bcc: address-list Black Carbon Copy is a header that

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 64

Header Syntax Description

Example:
To:"John Doe"<john@domain.com>
Cc:"Chris Doe"<chris@domain.com>
Bcc:"Al Doe"<al@domain.com>

In this example the Bcc line indicates
that Al mailbox should not be visible to
John and Chris.

allows you to send copies of a mail to
one or several persons without their
mailboxes being visible to the other
recipients in the To and Cc headers.
This line should be eliminated by the
MTA servers. How MTA servers deal
with this header depends on the MTA
platform.

2.2.3.5. Identification Headers

These headers contain identification information about the original mail and / or its

relationship with previous mails.

Header Syntax Description

 message-
id

Message-Id: msg-id

Examples:
Message-
ID:<1C6DA6E38824413B33C67@mta.domain.com>
Message-ID:<ABC1234EFDAB234>
Message-ID:<123423423@user.domain.com>

Each MTA server
should generate its
own process that
ensures that every
sent mail contains a
unique identifier that
identifies among all
the mails sent by
itself. There is no
standard for the ID
but these usually use
the server hostname,
the domain or the
user’s mailbox that
originates the mail.

 references References: msg-id

Example:
Message-ID: <BCDAFAABCD12AED>
References: <ABC1234EFDAB234>,
<123423423@user.domain.com>

In this example, the Message-ID refers to the

When you reply
several times to the
same mail it is
common to use
REFERENCES to
include the Message-
IDs of the mails
involved in the

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 65

Header Syntax Description

identifier of the mail that is being sent. References
contains the Message-ID of the mails on which a
reply has been made.

conversation in order
to speed up the
indexing and tracing
processes of all the
mails related with the
same topic.

 in-reply-to In-Reply-To: msg-id

Example:
Message-ID: <BCDAFAABCD12AED>
In-Reply-To: <ABC1234EFDAB234>

Here, the Message-ID refers to the unique identifier
of the mail that is being sent and the In-Reply-To
contains the Message-ID of the mail on which a
reply has been made.

This header is used to
send the original
Message-ID of a mail
on which a user has
replied for the first
time. (REFERENCES is
currently used instead
of this header).

2.2.3.6. Information Headers

These headers contain information that will be interpreted by the recipient.

Header Syntax Description

 subject Subject: text

Example:
Subject: This is
the subject of
the mail

This header is used for the recipient to quickly identify what
the topic of the mail is. It is usually a short description of the
content and it should not overpass the 998 character limit
although it is recommended to be of no more of 78 characters.

2.2.3.7. Tracing Headers

These headers contain information used to identify the different points the mail has

passed through.

Header Syntax Description

 return Return-Path: path

Example:
Return-Path:<user@domain.com>

The value from the MAIL
command in the mail envelope
(MAIL FROM) remains in the
final mail in the Return-Path
header. There can only be one
header of this type on every

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 66

Header Syntax Description

mail.

 received Received: received-token

Example:
Received: from tmcent01.training6.tm
([192.168.75.129]) by tmw3k01.training2.tm
with Microsoft SMTPSVC(6.0.3790.3959);
 Mon, 4 Oct 2010 23:48:27 -0500
Received: from unknown (unknown
[192.168.75.1])
 by tmcent01.training6.tm (Postfix) with
SMTP id 6755D90041A
 for <user@domain.com>; Mon, 4 Oct 2010
23:48:09 -0500 (CDT)

This mail originated in the mail server with IP
192.168.75.1 and received by
tmcent01.training6.tm. Later, the mail was
received from server tmcent01.training6.tm
by server tmw3k01.training2.tm. The
Received headers must be read from the
bottom to the top, being the last Received
the first MTA in the mail flow and first being
the final MTA server to which the mail was
delivered to.

The Received headers are
written to have the
information of all the MTA
servers the mail has passed
through. Even when RFC 5322
does not force these headers
to exist, RFC 5321 actually
forbids these headers to be
removed or modified by any
MTA once they’ve been
received. Every MTA that
receives a mail must stamp a
new Received header with its
own information about from
which server it received the
mail and its own hostname and
IP.

2.2.3.8. Optional Headers

These headers may or may not appear on the final mail.

Header Source Description

 X-Headers SMTP - RFC
5322

These headers may contain any kind of
additional information to be used or
interpreted by a user or software. The only
rule that must be met is for these headers
to begin with “X-“ or “x-“.

Disposition-Notification-
To:<user@domain.com>

SMTP - RFC
3798

This is used to send a read receipt
notification. The value for
<user@domain.com> corresponds to the
mailbox to which the notification will be

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 67

Header Source Description

sent.

Content-Language: es-
MX

SMTP - RFC
3282

This is used to indicate the preferred
language for reading the mail. The first two
letters indicate the language (es) and the
other two correspond to the country (MX),
this is because there might be a difference
in the same language depending on the
country for example es-MX and es-ES
(Spain).

Importance: Normal

SMTP - RFC
2156

This is a description about the importance
of the mail. The valid values are Low,
Normal and High.

2.2.3.9. MIME Headers

These headers identify the mail as MIME compliant.

Header Syntax Description

MIME-Version Syntax: MIME-Version 1.0 This header is defined once for each mail
and is used to identify this mail as MIME
compliant. The only actual version is 1.0.

Content-Type Syntax: Content-Type: media
type/subtype; parameters

media type= “text” / ”image” /
”video” / ”audio” / ”application”/
“multipart” / “message

subtype = any specific media type

parameters =any modifier that
helps to correctly interpret the
information format

This is used to define the type and format
of the information transmitted. Media
type is a generic description of the
content. Subtype is a more specific format
definition. Parameters can be used in
conjunction with media types like “text”
to define more information about the
content. The seven main media types are:
text, image, video, audio, application,
multipart and message.

Content-
Transfer-
Encoding

Syntax: Content-Transfer-
Encoding: mechanism

mechanism= “7bit” / “8bit” /
“binary” / “base64”

Defines the coding mechanism used in the
mail body. The default value is 7bit which
corresponds to the US-ASCII charset. 8bit
allows transmissions of the full ASCII
charset. Binary is used to send data that is
not covered by any specific format.
Base64 encodes the content in a special
charset allowing the transmissions of any
character not contained in the US-ASCII.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 68

Header Syntax Description

Content-ID Syntax: Content-ID: msg-id Used to identify a specific body identity
throughout the whole mail. A clear
example of its implementation is the use
of embedded images inside the body.

Content-
Description

Syntax: Content-Description: text It is a human readable description about
an specific body section.

Because of its complexity, the MIME headers will be shown in more detail in the following

sections with practical examples.

2.2.4. Body

After closing the header section with the <CRLF><CRLF> syntax, all the remaining text will

be treated as visible text and a user will be able to visualize it on the final mail. The only

exception is when the body is defined in MIME format in which case the visible parts will

be defined by the MIME headers. All of the information included in this section (including

attachments) must be ASCII characters, just as requested by RFC 2821.

In the first version of SMTP (RFC 821) it was only allowed to send text that was contained

under the US-ASCII charset, any other information was discarded, but after the revision of

RFC 2821 it is now possible to send encoded characters for different languages and even

file formats, the only condition is to meet the MIME format requirements.

In all of the SMTP Protocol revisions the fact that a system must work as long the syntax

and structure of the mail is correct has been always implicit. This means that at any

moment the protocol is not responsible nor is it force to perform any kind of verification

of the information being transferred even if it is unsolicited data or malware. However,

there are certain recommendations of having mechanisms that maintain the system

secure against attacks.

The body structure in a mal is specified from RFC 2045 to 2049 about the MIME format

which extends the earlier conditions of RFC 822 about IMF (Internet Mail Format) in order

to provide the mail servers with the right mechanisms to send and interpret different

types of data.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 69

The MIME headers may appear as a result of the following two conditions:

1. As part of the header inside an ordinary RFC 822 compliant mail. This means that

the headers may appear in normal mail with MIME format or as part of a RFC 822

mail attached to a MIME format mail.

2. Inside the MIME headers of a Multipart mail. This means, these headers will

appear on each body section that define different content format. For example,

there will be a MIME header to define a normal text section, another to define a

music file format, another for an image file format and so on.

The following headers have been defined o specify that a body is MIME compliant:

MIME-Version

This header indicates the mail is MIME compliant, in which case it is only needed once. If

this header is absent then the MTA server may treat this mail as MIME compliant. Right

now the only version is 1.0.

Syntax: MIME-Version: 1.0

Content-Type

This is used to describe the body content in such a way the UA (like Outlook for example)

can choose the right mechanism or application to present the user when he/she opens the

mail. For example, if the mail contains an MP3 file, the UA will ask the OS if it already has

an application that can handle such format, in which case the appropriate icon will appear

to the user.

The value for this header is called “media-type”. The content and format of the data is

described by specifying a type and subtype of the information, where type is a generic

description of the data and subtype specifies the format. A media type “image/xyz” for

example is enough for the UA (User Agent) to know the data is about an image even when

the UA doesn’t recognize the “xyz” format.

RFC 2046 defines a set of 7 media types. Five of them are global data formats and the

remaining two refer to mail structure that require an additional processing. The

description for each format is shown below:

The main Media Types are:

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 70

1. Text. This corresponds to any encoded, rich or plain text format. If no value is

defined, the default will be “text/plain”, where subtype “plain” defines that all

characters included in the section are to be presented with its equivalent to ANSI

X3.4-1986 (US-ASCII) representation. This is the simplest way to send text in any

mail. This media type accepts a modifier called “charset”, used to define the

charset that will be used to interpret the data. When this is not defined, the

default value will be “Content-Type: text/plain; charset=us-ascii”. In such a case

where neither subtype and charset are not recognized, the data should be treated

as “application/octet-stream”.

2. Image. This is any data that requires a graphical device to present the information

(monitor, printer, fax, etc.). The default value is “jpeg”. Any non recognizable

subtype should be treated as “application/octet-stream”.

3. Audio. This is any data that requires an audio device to “present” the information.

The default subtype is “basic” and is defined as a single coded audio channel with

8-bit ISDN mu-law [PCM] with a sample rate of 8000 Hz. Any non recognizable

subtype should be treated as “application/octet-stream”.

4. Video. This is any data that requires a device capable of presenting motion picture

data, including both software or specific hardware. The default subtype is “mpeg”.

Any non recognizable subtype should be treated as “application/octet-stream”.

5. Application. This is any other not interpretable binary information or data that

should be processed by a specific non standard application. There are two default

subtypes: Octet-Stream which indicates any arbitrary binary information and

PostScript which indicates the presence of PostScript language written

information.

The two composition media types are:

6. Multipart. This is any data that includes multiple independent data entities. There

are four basic subtypes: “mixed” to specify a mixed set of several parts,

“alternative” to represent the same information in different formats, “parallel” for

data sections that must be shown simultaneously, and “digest” for multipart

entities in which each part has a default type of “message/rfc822”.

7. Message. Defines a whole or partial “encapsulated” mail included in the original

mail. There are three subtypes: “rfc822” used when the content itself is an RFC 822

mail, “partial” used to transmit segments of the body when these are too big, and

“external-body” to specify the body is located in an external source.

Content-Transfer-Encoding

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 71

Because RFC 2821 only allows the use of 7bit US-ASCII charset in lines no longer than 1000

characters, alternate means of codification are needed to send large amounts of data in

different formats. The MIME format extends this definition by allowing information

transmission in the following formats: “7bit” to send all the characters of US-ASCII, “8bit”

to send the complete ASCII charset, “binary” for binary format data, “quoted-printable” to

represent characters as they’ve been received without any coding / decoding operation,

and “base64” to send large amounts of data, like files.

1. Quoted-Printable. This codification is used to transmit characters that correspond

any charset, being the default US-ASCII. This is useful when a specific language

includes characters not included here like “ñ”. It is usually used for coding the

subject and the readable body content.

2. Base64. This is used to encode non readable characters like binary information. It

is usually used to transmit files of any format. The coding / decoding algorithm

allows the conversion of any kind of data to a reduced set of only 65 ASCII

characters which can be easily transmitted over any SMTP session. Because of this

conversion, it is expected for the information to grow up to 33% of the original

data. For example, an attached 10MB PPT file will grow up to a maximum of 13MB.

According to standards RFC 2045 through 2049, you can generate any kind of mail that

includes any of the file formats you may need. In the following sections we’ll review how

the MIME format is really implemented in several types of mails, from the ones that are

just plain text to the more complicated that include several sections and attached files.

2.2.4.1. Body Simple

The simplest form of a mail is the plain text mail that only contains US-ASCII characters.

Any different character will be represented with its ASCII equivalent. If such characters are

used in the SMTP commands, the SMTP Server may respond with one of the following

status codes:

501 5.5.4 Unrecognized parameter

501 5.5.4 Invalid Address

500 5.3.3 Unrecognized command

The definition of this charset is shown in the following table:

Dec Hex Symbol Dec Hex Symbol Dec Hex Symbol

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 72

32 20 Space () 64 40 @ 96 60 `

33 21 ! 65 41 A 97 61 a

34 22 “ 66 42 B 98 62 b

35 23 # 67 43 C 99 63 c

36 24 $ 68 44 D 100 64 d

37 25 % 69 45 E 101 65 e

38 26 & 70 46 F 102 66 f

39 27 ' 71 47 G 103 67 g

40 28 (72 48 H 104 68 h

41 29) 73 49 I 105 69 i

42 2A * 74 4A J 106 6A j

43 2B + 75 4B K 107 6B k

44 2C , 76 4C L 108 6C l

45 2D - 77 4D M 109 6D m

46 2E . 78 4E N 110 6E n

47 2F / 79 4F O 111 6F o

48 30 0 80 50 P 112 70 p

49 31 1 81 51 Q 113 71 q

50 32 2 82 52 R 114 72 r

51 33 3 83 53 S 115 73 s

52 34 4 84 54 T 116 74 t

53 35 5 85 55 U 117 75 u

54 36 6 86 56 V 118 76 v

55 37 7 87 57 W 119 77 w

56 38 8 88 58 X 120 78 x

57 39 9 89 59 Y 121 79 y

58 3A : 90 5A Z 122 7A z

59 3B ; 91 5B [123 7B {

60 3C < 92 5C \ 124 7C |

61 3D = 93 5D] 125 7D }

62 3E > 94 5E ^ 126 7E ~

63 3F ? 95 5F _
Table 2. US-ASCII characters

The simplest mail transmission in plain text is shown in the following SMTP conversation:

Example 1. Simple Body

220 tmw3k01.training2.tm Microsoft ESMTP MAIL Service, Version: 6.0.3790.3959 ready at Tue, 1 Feb 2012 20:31:18 -

0600

EHLO test.training2.tm

250-tmw3k01.training2.tm Hello [192.168.75.3]

250-TURN

250-SIZE 1048576

250-ETRN

250-PIPELINING

250-DSN

250-ENHANCEDSTATUSCODES

250-8bitmime

250-BINARYMIME

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 73

250-CHUNKING

250-VRFY

250-X-EXPS GSSAPI NTLM LOGIN

250-X-EXPS=LOGIN

250-AUTH GSSAPI NTLM LOGIN

250-AUTH=LOGIN

250-X-LINK2STATE

250-XEXCH50

250 OK

MAIL FROM:<asdf@asdf.com>

250 2.1.0 asdf@asdf.com....Sender OK

RCPT TO:<administrator@training2.tm>

250 2.1.5 administrator@training2.tm

DATA

354 Start mail input; end with <CRLF>.<CRLF>

from: user1

to: user2

subject:test

date:mon, 5 nov 1980

este es un correo de prueba

saludos

.

250 2.6.0 <20110202023051.037496003C@hub.training2.tm> Queued mail for delivery

QUIT

221 2.0.0 tmw3k01.training2.tm Service closing transmission channel

This is the easiest way to transmit a mail that only contains plain text. The main sections
are described below:

Envelope Section.

1. EHLO test.training2.tm. This is the initial greeting used to start any SMTP conversation
between both MTA servers using the SMTP extended version (ESMTP).

2. MAIL FROM:<asdf@asdf.com>. This command is used to determine a mailbox to use in
case the mail delivery fails. This is the only envelope value that may be saved in the
mail headers in the form of Return-path.

3. RCPT TO:<administrator@training2.tm>. This command sends the recipient mailbox. For
mails with more than one recipient, a separate command must be send for each
recipient.

4. DATA. This command closes the envelope buffer and starts a new buffer to
temporarily store the mail body. The first section contains the Headers. All data
contained here will be transmitted within the mail up to its final destination. Once
the Header section is finished, the body section starts.

Headers Section.

from: user1

to: user2

subject:test

date:mon, 12 may 1980

Envelope

Headers

Body

SMTP Session closure

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 74

This particular example doesn’t show any information about the MIME format. In these
cases, the SMTP Server should assume the following implicit headers but it doesn’t have
to add them to the original mail.

MIME-Version: 1.0

Content-Type: text/plain; charset=US-ASCII

Content-Transfer-Encoding: 7bit

Whether the MIME headers are present or not, the mail will look something like this to
the final recipient.

Image 16. Simple Body Mail

At this point you should note that information from the envelope and headers may be
different, just compare the mailboxes used for the envelope section against the ones in
the from and to headers. You should also note something strange in the date header.
We’ll talk about these details in the Vulnerabilities section.

Body

este es un correo de prueba

saludos

.

This is the actual visible content of the mail body as can be seen in the previous image.
Because the default MIME headers were assumed, given the fact we didn’t send them in
the header section, all characters are represented in its US-ASCII equivalent. The last line,
which contains only a “.” is not part of the content, this is the syntax used to indicate the
SMTP Server the body section should be closed now.

SMTP Session closure.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 75

QUIT

This command closes the SMTP session. The SMTP Client is allowed to send as many mails
as long as the session remains open. In those cases where the session is still opened and
the SMTP Client is not sending any more data, the SMTP Server is allowed to close the
session when a certain timeout has passed.

2.2.4.2. Alternate Body

Actual User Agents like Outlook can interpret several text formats (plain text, rich text,

HTML, etc). For this reason a single mail may contain several text formats for the UA to

choose the one that fits the best for the user needs. A mail sent with Outlook will be

created by default with two formats, one in HTML and one in text plain for those users

with mobile devices that do not understand HTML. This same mail will be presented in

HTML format for an Outlook user and in plain text for the mobile user.

The following is an example of such mails.

Example 2. Alternate body with HTML and plain text

DATA

354 Start mail input; end with <CRLF>.<CRLF>

Subject: mensaje con vista alterna

Date: Thu, 3 Feb 2011 17:35:48 -0600

MIME-Version: 1.0

Content-Type: multipart/alternative;

 boundary="----_=_NextPart_001_01CBC3FB.169ED34A"

From: "User1" <user1@training2.tm>

To: "User2" <user2@training2.tm>

This is a multi-part message in MIME format.

------_=_NextPart_001_01CBC3FB.169ED34A

Content-Type: text/plain;

 charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

Hola!

=20

Dependiendo del cliente que utilices podr=E1s ver este correo en su =

versi=F3n HTML o en su versi=F3n de texto plano!!

=20

Saludos!

=20

------_=_NextPart_001_01CBC3FB.169ED34A

Content-Type: text/html;

a)

b)

c)

d)

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 76

 charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML><HEAD>

<META http-equiv=3DContent-Type content=3D"text/html; =

charset=3Diso-8859-1">

<META content=3D"MSHTML 6.00.3790.3959" name=3DGENERATOR></HEAD>

<BODY>

<DIV><FONT face=3DArial=20

size=3D5>Hola!</DIV>

<DIV><FONT face=3DArial=20

size=3D5> </DIV>

<DIV><FONT face=3DArial =

size=3D2>Dependiendo=20

del cliente que utilices podr=E1s ver este correo en su <U><FONT =

color=3D#ff0000>versi=F3n HTML</U> o en su versi=F3n de =

texto=20

plano!!</DIV>

<DIV><FONT face=3DArial=20

size=3D2> </DIV>

<DIV><FONT face=3DCourier=20

size=3D2>Saludos!</DIV>

<DIV><FONT face=3DArial=20

size=3D2> </DIV></BODY></HTML>

------_=_NextPart_001_01CBC3FB.169ED34A--

.

250 2.6.0 <TMW3K01LvUcaL7IbKRg0000000b@tmw3k01.training2.tm> Queued mail for delivery

Now let’s analyze each of the parts involved in this mail to understand how it was

generated.

a) This mail was created to send two slightly different sections. The first

section contains the body in plain text for those non HTML capable User

Agents. The second section contains exactly the same content but in HTML

format. The mail is designed to show only one of the section at any given

time, this means the final recipient won’t see the same content duplicated

in both plain text and HTML format. Based on this, we can conclude we

need to use a MIME Content-Type header with multipart/alternative.

Multipart defines this mail as composed of more than one section in the

same body while alternative specifies that only one body section will be

visible. Mail clients use this header to choose which format will be the most

appropriate to show the content to the final recipient.

It is worth mentioning here that, because of an efficiency use, the most

appropriate format is left to the end, this means, if we were to send both

e)

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 77

plain text and HTML together, it’s advisable to put the plain text first and

then HTML, this let mail clients know HTML should be preferred over plain

text whenever they are capable of presenting such format. If they can’t

present the last option, they’ll choose the previous, and if this can’t be

presented too, then the previous, and so on until they reach the first option

which should always be plain text. Remember that plain text is a format all

mail clients are capable to present because it doesn’t involve any particular

interpretation.

This definition implies that each part must be separated from each other by

means any mail client can implement, otherwise the whole mail would

become unreadable. This function is implemented by a modifier parameter

called “Boundary” which is responsible of indicating the beginning of each

section and the end of the whole MIME format.

This Boundary has four simple and basic rules:

1. It must only contain US-ASCII characters.

2. It may be as long as 68 characters.

3. When the Boundary itself contains the “:” (colon) character, the

whole Boundary must be encapsulated using quotes ‘”’.

4. Only one boundary can be defined for each header. (We’ll talk a

little more about this rule when we get to more complicated mails).

In our example the boundary is: ----_=_NextPart_001_01CBC3FB.169ED34A

b) As we saw on 2.2.4.1. about simple bodies, we can close the headers

section with two <CRLF> (ENTER) and start writing the mail content right

away. For composed mail with a defined Boundary, this is not enough to

start writing the body. Any text string that appears after the two <CRLF>

characters of the header and before the first presence of the Boundary is

known as “Preamble”. All this text will be ignored by any SMTP Server as

this section is defined for giving just a general description of the body mail

structure. In our example, the Preamble has the following description:

“This is a multi-part message in MIME format”, but this won’t be

interpreted by the SMTP Server.

c) To start writing the first plain text part of the body we must open the

section by defining the first Boundary. You should be aware that from the

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 78

moment you start using the Boundary to start a section inside the mail

body, you must follow this syntax:

Syntax: “--"Boundary

At this point you may compare the Boundary definition used in a) and c) to

see the difference.

a) ----_=_NextPart_001_01CBC3FB.169ED34A

c) ------_=_NextPart_001_01CBC3FB.169ED34A

The Boundary is always defined after a <CRLF> character, followed by two

hyphens “--" and ended with the exact same string defined in the Content-

Type header followed by a final <CRLF>.

The next line may follow one of the following conditions:

a) The line may start with a Content-Type header with its corresponding

definition. In such case the header must be ended with two consecutive

<CRLF> as it occurs with the main mail header.

b) The line may be a <CRLF>. In such case, a mail client must assume there

are no headers and will treat the following lines as part of a Content-Type:

message/rfc822 for a multipart/digest mail or a Content-Type:text/plain for

the remaining types.

c) The line may directly start with the corresponding body for that section.

In such case all characters should be treated as the header for that section

and therefore such characters will not be visible in the mail client when the

recipient opens the mail. This is an example of a malformed mail. This kind

of mails may be represented in multiple forms depending on the content

but it will never be represented as intended in the first place.

After the Boundary definition has been closed, the next part will be the

headers but remember these may be present or not depending on the

different possibilities already shown.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 79

The headers from our example are defining the content as plain text

(Content-Type: text/plain;) using the Latin1 or ISO-8859-1 (charset=ISO-

8859-1) charset. You can also notice the body should be presented as it is

with no additional modifications or interpretations (Content-Transfer-

Encoding: quoted-printable).

You may also notice some strange characters in this body section. This may

seem so for a human reading the text, but a mail client will first use the

charset definition and look for any corresponding character like the ones

shown in this section:

=20 (in Latin1 charset this corresponds to a space character)

=E1 (in Latin1 charset this corresponds to an “á” character)

= (at the end of the third line). It is worth mentioning that RFC 2821

recommends to transfer a maximum of 78 characters per line without

including the last <CRLF> even when a maximum of 1000 is supported.

Many mail clients will try to fit the content following this rule, is such

situation the line must end with a final “=” character, meaning the

following line is a continuation. This way the recipient’s mail client will be

able to properly understand the syntax and present a continuous line in the

final presentation.

=F3 (ó)

d) Once the first plain text part of the mail is finished, the second one will

start by defining the boundary again followed by the corresponding

headers. The content type to be used will be text/html. The remaining

parameters are not changed but the content will now be in HTML format.

e) In order to close the mail the boundary must be defined one last time but

using the following format:

Syntax: “--“Boundary”--“

In our example the final boundary would be:

------_=_NextPart_001_01CBC3FB.169ED34A--

As with any other mail, the complete body section must be closed by

issuing the <CRLF>.<CRLF> sequence. You must be aware that a section will

remain between the last boundary and the final closing sequence. This

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 80

section is called Epilogue. Any data contained here will be ignored by mail

clients and it is recommended not to use it to store any kind of information

as the mail client will not process it.

The way the final mail will be presented, depends on the interpretation capabilities the

mail client has. Our test mail will be presented in one of the following ways:

Table 3. Alternate mail with plain text and HTML format

In America, the most widely used charset is ISO-8859-1 that extends the original US-ASCII

set. The following table shows the representation of all characters belonging to this

charset. You may use this table as a reference for mail creation or interpretation.

Dec Hex Symbol Dec Hex Symbol Dec Hex Symbol

162 A2 ¢ 194 C2 Â 226 E2 â

163 A3 £ 195 C3 Ã 227 E3 ã

164 A4 ¤ 196 C4 Ä 228 E4 ä

165 A5 ¥ 197 C5 Å 229 E5 å

166 A6 | 198 C6 Æ 230 E6 æ

167 A7 § 199 C7 Ç 231 E7 ç

168 A8 ¨ 200 C8 È 232 E8 è

169 A9 © 201 C9 É 233 E9 é

170 AA ª 202 CA Ê 234 EA ê

171 AB « 203 CB Ë 235 EB ë

172 AC ¬ 204 CC Ì 236 EC ì

173 AD - 205 CD Í 237 ED í

174 AE ® 206 CE Î 238 EE î

175 AF ¯ 207 CF Ï 239 EF ï

176 B0 ° 208 D0 Ð 240 F0 ð

177 B1 ± 209 D1 Ñ 241 F1 ñ

178 B2 ² 210 D2 Ò 242 F2 ò

179 B3 ³ 211 D3 Ó 243 F3 ó

180 B4 ´ 212 D4 Ô 244 F4 ô

181 B5 µ 213 D5 Õ 245 F5 õ

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 81

Dec Hex Symbol Dec Hex Symbol Dec Hex Symbol

182 B6 ¶ 214 D6 Ö 246 F6 ö

183 B7 · 215 D7 × 247 F7 ÷

184 B8 ¸ 216 D8 Ø 248 F8 ø

185 B9 ¹ 217 D9 Ù 249 F9 ù

186 BA º 218 DA Ú 250 FA ú

187 BB » 219 DB Û 251 FB û

188 BC ¼ 220 DC Ü 252 FC ü

189 BD ½ 221 DD Ý 253 FD ý

190 BE ¾ 222 DE Þ 254 FE þ

191 BF ¿ 223 DF ß 255 FF ÿ

192 C0 À 224 E0 à

193 C1 Á 225 E1 á
Table 4. ISO 8859-1 characters (only non US-ASCII characters are shown)

Mails that include attachments will be explained in the following section.

2.2.5. Attachments

Before getting started with how mail attachments are creating, let’s start by noticing that

in SMTP an attachment is any piece of data attached to the mail body. Based on this, even

the text that constitutes the body of the mail should be treated as an attachment. When

we talk about multipart/alternative bodies, these also constitute a mail with at least two

attachment blocks where only one of them will be presented to the recipient.

By understanding this concept correctly, it will be easy to assimilate that when handling

mail attachments they may represent not only audio or video files but instead, the whole

body may be understood as an empty box were you can insert section parts like text,

images, documents in very precise blocks.

The following tables show the most common MIME types that can be used when

attaching several types of data to mail body.

This table shows the MIME types and subtypes for Application content

Type/subtype Extension Type/subtype Extension Type/subtype Extension

application/envoy evy application/vnd.ms-
pkiseccat

cat application/x-
msmediaview

mvb

application/fractals fif application/vnd.ms-
pkistl

stl application/x-
msmetafile

wmf

application/futuresplash spl application/vnd.ms-
powerpoint

pot application/x-
msmoney

mny

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 82

Type/subtype Extension Type/subtype Extension Type/subtype Extension

application/hta hta application/vnd.ms-
powerpoint

pps application/x-
mspublisher

pub

application/internet-
property-stream

acx application/vnd.ms-
powerpoint

ppt application/x-
msschedule

scd

application/mac-
binhex40

hqx application/vnd.ms-
project

mpp application/x-
msterminal

trm

application/msword doc application/vnd.ms-
works

wcm application/x-
mswrite

wri

application/msword dot application/vnd.ms-
works

wdb application/x-
netcdf

cdf

application/octet-
stream

* application/vnd.ms-
works

wks application/x-
netcdf

nc

application/octet-
stream

bin application/vnd.ms-
works

wps application/x-
perfmon

pma

application/octet-
stream

class application/winhlp hlp application/x-
perfmon

pmc

application/octet-
stream

dms application/x-bcpio bcpio application/x-
perfmon

pml

application/octet-
stream

exe application/x-cdf cdf application/x-
perfmon

pmr

application/octet-
stream

lha application/x-
compress

z application/x-
perfmon

pmw

application/octet-
stream

lzh application/x-
compressed

tgz application/x-
pkcs12

p12

application/oda oda application/x-cpio cpio application/x-
pkcs12

pfx

application/olescript axs application/x-csh csh application/x-
pkcs7-
certificates

p7b

application/pdf pdf application/x-
director

dcr application/x-
pkcs7-
certificates

spc

application/pics-rules prf application/x-
director

dir application/x-
pkcs7-
cerreqresp

p7r

application/pkcs10 p10 application/x-
director

dxr application/x-
pkcs7-mime

p7c

application/pkix-crl crl application/x-dvi dvi application/x-
pkcs7-mime

p7m

application/postscript ai application/x-gtar gtar application/x-
pkcs7-signature

p7s

application/postscript eps application/x-gzip gz application/x-sh sh

application/postscript ps application/x-hdf hdf application/x-
shar

shar

application/rtf rtf application/x-
internet-signup

ins application/x-
shockwave-flash

swf

application/set-
payment-initiation

setpay application/x-
internet-signup

isp application/x-
stuffit

sit

application/set-
registration-initiation

setreg application/x-
iphone

iii application/x-
sv4cpio

sv4cpio

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 83

Type/subtype Extension Type/subtype Extension Type/subtype Extension

application/vnd.ms-
excel

xla application/x-
javascript

js application/x-
sv4crc

sv4crc

application/vnd.ms-
excel

xlc application/x-latex latex application/x-
tar

tar

application/vnd.ms-
excel

xlm application/x-
msaccess

mdb application/x-tcl tcl

application/vnd.ms-
excel

xls application/x-
mscardfile

crd application/x-
tex

tex

application/vnd.ms-
excel

xlt application/x-
msclip

clp application/x-
texinfo

texi

application/vnd.ms-
excel

xlw application/x-
msdownload

dll application/x-
texinfo

texinfo

application/vnd.ms-
outlook

msg application/x-
msmediaview

m13 application/x-
troff

roff

application/vnd.ms-
pkicertstore

sst application/x-
msmediaview

m14 application/zip zip

Table 5. Application MIME Types

This table shows the MIME Types and subtypes for Audio content.

Type/subtype Extension

audio/basic au

audio/basic snd

audio/mid mid

audio/mid rmi

audio/mpeg mp3

audio/x-aiff aif

audio/x-aiff aifc

audio/x-aiff aiff

audio/x-mpegurl m3u

audio/x-pn-realaudio ra

audio/x-pn-realaudio ram

audio/x-wav wav
Table 6. Audio MIME Types

This table shows the MIME Types and subtypes for IMAGE content.

Type/subtype Extension

image/bmp bmp

image/cis-cod cod

image/gif gif

image/ief ief

image/jpeg jpe

image/jpeg jpeg

image/jpeg jpg

image/pipeg jfif

image/png png

image/svg+xml svg

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 84

Type/subtype Extension

image/tiff tif

image/tiff tiff

image/x-cmu-raster ras

image/x-cmx cmx

image/x-icon ico

image/x-portable-anymap pnm

image/x-portable-bitmap pbm

image/x-portable-graymap pgm

image/x-portable-pixmap ppm

image/x-rgb rgb

image/x-xbitmap xbm

image/x-xpixmap xpm

image/x-xwindowdump xwd
Table 7.Image MIME Types

This table shows the MIME Types and subtypes for Message content.

Type/subtype Extension

message/rfc822 mht

message/rfc822 mhtml

message/rfc822 nws
Table 8. Message MIME Types

This table shows the MIME Types and subtypes for TEXT content.

Type/subtype Extension

text/css css

text/h323 323

text/html htm

text/html html

text/html stm

text/iuls uls

text/plain bas

text/plain c

text/plain h

text/plain txt

text/richtext rtx

text/scriptlet sct

text/tab-separated-values tsv

text/webviewhtml htt

text/x-component htc

text/x-setext etx

text/v-card vcf
Table 9.TEXT MIME Types

This table shows the MIME Types and subtypes for VIDEO content.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 85

Type/subtype Extension

video/mpeg mp2

video/mpeg mpa

video/mpeg mpe

video/mpeg mpeg

video/mpeg mpg

video/mpeg mpv2

video/quicktime mov

video/quicktime qt

video/x-la-asf lsf

video/x-la-asf lsx

video/x-ms-asf asf

video/x-ms-asf asr

video/x-ms-asf asx

video/x-msvideo avi

video/x-sgi-movie movie
Table 10.Video MIME Types

2.2.5.1. Multipart/mixed

To get started, will first talk about how data is transmitted by SMTP protocol. From what

have been previously presented, we already know RFC 2821 permits only the use of the

US-ASCII charset along the whole SMTP conversation, so a model was needed to allow the

transmission of any data using only this fixed charset.

The base64 algorithm was introduced to achieve this. Its goal is to allow the encoding of

any type of data by using exclusively US-ASCII contained characters. RFC 2046 section 6.8

describes the mechanism to be implemented by any data encoding process. The following

paragraph is extracted from the original RFC but it is to be noted this information may

only be useful if you need to develop applications or modules that will actually encode /

decode using base64. An explanation of the whole algorithm is beyond the scope of this

book.

6.8. Base64 Content-Transfer-Encoding

 The Base64 Content-Transfer-Encoding is designed to represent

 arbitrary sequences of octets in a form that need not be humanly

 readable. The encoding and decoding algorithms are simple, but the

 encoded data are consistently only about 33 percent larger than the

 unencoded data. This encoding is virtually identical to the one used

 in Privacy Enhanced Mail (PEM) applications, as defined in RFC 1421.

 A 65-character subset of US-ASCII is used, enabling 6 bits to be

 represented per printable character. (The extra 65th character, "=",

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 86

 is used to signify a special processing function.)

[…]

 The encoding process represents 24-bit groups of input bits as output

 strings of 4 encoded characters. Proceeding from left to right, a

 24-bit input group is formed by concatenating 3 8bit input groups.

 These 24 bits are then treated as 4 concatenated 6-bit groups, each

 of which is translated into a single digit in the base64 alphabet.

 When encoding a bit stream via the base64 encoding, the bit stream

 must be presumed to be ordered with the most-significant-bit first.

 That is, the first bit in the stream will be the high-order bit in

 the first 8bit byte, and the eighth bit will be the low-order bit in

 the first 8bit byte, and so on.

 Each 6-bit group is used as an index into an array of 64 printable

 characters. The character referenced by the index is placed in the

 output string. These characters, identified in Table 1, below, are

 selected so as to be universally representable, and the set excludes

 characters with particular significance to SMTP (e.g., ".", CR, LF)

 and to the multipart boundary delimiters defined in RFC 2046 (e.g.,

 "-").

Table 1: The Base64 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding

 0 A 17 R 34 i 51 z

 1 B 18 S 35 j 52 0

 2 C 19 T 36 k 53 1

 3 D 20 U 37 l 54 2

 4 E 21 V 38 m 55 3

 5 F 22 W 39 n 56 4

 6 G 23 X 40 o 57 5

 7 H 24 Y 41 p 58 6

 8 I 25 Z 42 q 59 7

 9 J 26 a 43 r 60 8

 10 K 27 b 44 s 61 9

 11 L 28 c 45 t 62 +

 12 M 29 d 46 u 63 /

 13 N 30 e 47 v

 14 O 31 f 48 w (pad) =

 15 P 32 g 49 x

 16 Q 33 h 50 y

 The encoded output stream must be represented in lines of no more

 than 76 characters each. All line breaks or other characters not

 found in Table 1 must be ignored by decoding software. In base64

 data, characters other than those in Table 1, line breaks, and other

 white space probably indicate a transmission error, about which a

 warning message or even a message rejection might be appropriate

 under some circumstances.

 Special processing is performed if fewer than 24 bits are available

 at the end of the data being encoded. A full encoding quantum is

 always completed at the end of a body. When fewer than 24 input bits

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 87

 are available in an input group, zero bits are added (on the right)

 to form an integral number of 6-bit groups. Padding at the end of

 the data is performed using the "=" character. Since all base64

 input is an integral number of octets, only the following cases can

 arise: (1) the final quantum of encoding input is an integral

 multiple of 24 bits; here, the final unit of encoded output will be

 an integral multiple of 4 characters with no "=" padding, (2) the

 final quantum of encoding input is exactly 8 bits; here, the final

 unit of encoded output will be two characters followed by two "="

 padding characters, or (3) the final quantum of encoding input is

 exactly 16 bits; here, the final unit of encoded output will be three

 characters followed by one "=" padding character.

 Because it is used only for padding at the end of the data, the

 occurrence of any "=" characters may be taken as evidence that the

 end of the data has been reached (without truncation in transit). No

 such assurance is possible, however, when the number of octets

 transmitted was a multiple of three and no "=" characters are

 present.

 Any characters outside of the base64 alphabet are to be ignored in

 base64-encoded data.

 Care must be taken to use the proper octets for line breaks if base64

 encoding is applied directly to text material that has not been

 converted to canonical form. In particular, text line breaks must be

 converted into CRLF sequences prior to base64 encoding. The

 important thing to note is that this may be done directly by the

 encoder rather than in a prior canonicalization step in some

 implementations.

To better understand how to use the Media-Type Multipart/mixed we’ll now try to

generate a mail that is able to transmit the following message block:

Image 17. Using the Multipart/mixed Media-Type

In order to understand how a message like this should be transmitted we first need to

understand how the message is composed. By just looking at the structure it is easy to see

this mail is composed of two separate blocks: one in plain text and another with an

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 88

attached image. This is enough to know we need a main definition of multipart/mixed as

we will really transmit a mixed content within the same message.

The first part of the header will be something like this:

From:"user1"<user1@training2.tm>

To:"user2"<user2@training2.tm>

Subject: Prueba de correo con adjuntos

Date:Mon, 5 Oct 1980 18:00:00 -0600

MIME-Version: 1.0

Content-Type:multipart/mixed;

 boundary=uno

This is a multipart message in MIME format

--uno

Content-Type:text/plain;charset=iso-8859-1

Content-Transfer-Encoding:quoted-printable

A quien corresponda:

Por favor s=EDrvase encontrar adjunta la imagen que solicit=F3.

Atentamente.

John Doe

--uno

Content-Type: image/gif;

 name="logo_tagline_09.gif"

Content-Transfer-Encoding: base64

Content-ID: <image1>

Content-Description: logo_tagline_09.gif

Content-Location: logo_tagline_09.gif

This header defines a plain text section with charset ISO

8859-1 and because it is text we’re defining a coding

mechanism of Quoted-Printable to present the characters

as they are sent.

This is the coded plain text using

charset ISO 8859-1.

Defines the message as composed of more than one

“part” with mixed content. It also establishes the

“boundary” used to separate each of the parts.

Now we define a new header to start the transfer of the image with a

Content-Type: image/gif which also accepts the parameter “name=”

that stores the original file name. Content-Transfer-Encoding: base64

indicates the following block is composed of encoded data and not a

readable representation of the original content. Content-ID is a unique

identifier for this block that may be used as a reference for other

bodies. Content-Description is just a description of the file

while Content-Location tells the complete path to reach the

file.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 89

R0lGODlhMQEyAPcAAPmxme45Ls7MzP718tLHye4rKfb29oKAgY+MjfijiPBUPOnp6fnCtOwcJCkl

Jvzh19ExMebl5vN9ZOgPF8TDxPmskuGopsy3t+3t7vSCZdcaIfva2vu9qfRybqWkpERAQZWTk/ed

gfJsUfFgRPi5vPNpTHZzdOu5te9KNd7d3Tg0Nf3o4vNyVfzTw+iOgvr6+v3x7uLh4fz8/PPy8vBd

Q//cyu9BMPWLbeOWjPeWmZqYmfWOcfR7Xf7s5v3k3tXV1fmtmu0hJdHQ0fqdjNrZ2faSg7Kysl1Z

[…]

Clmw2QRQBsIt3AQgAPFQCaEQA1+d04dN1rJN2wLR2NAdFtBUDdwcDAYw0sVQ0sgQActlEAO9HQri

HQopEAPLEAE4zdo6fQ2wTc+tN93wnR4ZyM/BMNkjXdkYgAEmuN/7VwxpQA0Wzd76oNH1HN8EId0G

DhYmMg+zYA0yIM/DMAz1bQAUXuEGgA1NEOEvQA70fDoJ/uGoERAAOw==

--uno--.

Once received, the mail will be represented as we intended:

Image 18. Multipart/mixed message with an attached image

Now let’s transfer a message that will show an image as a signature:

Image 19. Message with attached "show in line" image

This is the

base64

representation

of the “gif”

image being

transmitted.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 90

We can manage to send a mail like this by adjusting the Content-Type header to

“text/html” to include the image as part of the body. Remember that when dealing with

attachments we have the Content-ID parameter we can use to “call” or “insert” a data

block inside another body. The following structure shows how to create this kind of mails.

From:"user1"<user1@training2.tm>

To:"user2"<user2@training2.tm>

Subject: Prueba de correo con adjuntos

Date:Mon, 12 May 1980 18:00:00 -0600

MIME-Version: 1.0

Content-Type:multipart/mixed;

 boundary=uno

This is a multipart message in MIME format

--uno

Content-Type:text/html;charset=iso-8859-1

Content-Transfer-Encoding:quoted-printable

<html>

<body>

<p>A quien corresponda:</p>

<p>Por favor s=EDrvase encontrar adjunta la imagen que solicit=F3.</p>

<p>Atentamente.</p>

<p>John Doe</p>

</body>

</html>

The main header will again define a message as

composed of mixed content. It will also define the

boundary used to separate each data block.

Now we define an HTML text body with quoted-

printable text presentation using charset ISO

8859-1.

HTML Code. Let’s focus on

the <img src=3D”

cid:image1”> html tag.

“=3D” is the html

representation of the equal

symbol “=” this is to avoid

any HTML interpretation

problem. The “cid:”

parameter points to the

image “Content-ID” we

want to show in this exact

position. Here the ID

doesn’t show the “<” and

“>” symbols to avoid any

HTML representation

problem.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 91

--uno

Content-Type: image/gif;

 name="logo_tagline_09.gif"

Content-Transfer-Encoding: base64

Content-ID: <image1>

Content-Description: logo_tagline_09.gif

Content-Location: logo_tagline_09.gif

R0lGODlhMQEyAPcAAPmxme45Ls7MzP718tLHye4rKfb29oKAgY+MjfijiPBUPOnp6fnCtOwcJCkl

Jvzh19ExMebl5vN9ZOgPF8TDxPmskuGopsy3t+3t7vSCZdcaIfva2vu9qfRybqWkpERAQZWTk/ed

gfJsUfFgRPi5vPNpTHZzdOu5te9KNd7d3Tg0Nf3o4vNyVfzTw+iOgvr6+v3x7uLh4fz8/PPy8vBd

[…]

Clmw2QRQBsIt3AQgAPFQCaEQA1+d04dN1rJN2wLR2NAdFtBUDdwcDAYw0sVQ0sgQActlEAO9HQri

HQopEAPLEAE4zdo6fQ2wTc+tN93wnR4ZyM/BMNkjXdkYgAEmuN/7VwxpQA0Wzd76oNH1HN8EId0G

DhYmMg+zYA0yIM/DMAz1bQAUXuEGgA1NEOEvQA70fDoJ/uGoERAAOw==

--uno--

.

Once received, the mail will be shown exactly as intended:

Image 20. Multipart/mixed with a visible signature image

This header encodes the “logo_tagline_09.gif”

image in MIME format using the base64 algorithm.

It also identifies it with the unique ID “Content-

ID:<image_1>”, this allows it to be “called” or

“inserted” in any other body part.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 92

2.2.5.2. Multipart/Digest

The Multipart/Digest header is used when there’s a need to send a mail as an attachment

of a main message. The header helps the Mail Client (e.g. Outlook) to correctly interpret

there is at least one composed body with an RFC 822 IMF format compliant mail attached.

An example of this is shown in the image below:

Image 21. Mail with another mail attached

Let’s now analyze how to create each of the parts needed for a message like this.

From:"user1"<user1@training2.tm>

To:"user2"<user2@training2.tm>

Subject: Prueba de correo con adjuntos

Date:Mon, 05 Oct 2012 18:00:00 -0600

MIME-Version: 1.0

Content-Type:multipart/mixed;

 boundary=uno

This is a multipart message in MIME format

--uno

Content-Type:text/html;charset=iso-8859-1

Content-Transfer-Encoding:quoted-printable

First of all we need to define the message as

composed of multiple parts of mixed content and

boundary “uno” used to separate them.

HTML body for the main message.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 93

<html>

<body>

<p>A quien corresponda:</p>

<p>Adjunto encontrar=E1 el mail con la respuesta solicitada.</p>

<p>Atentamente.</p>

<p>John Doe</p>

</body>

</html>

--uno

Content-Type:multipart/digest;

 boundary=dos

--dos

Content-Type:message/rfc822;

From:user3

To:User4

Date:Fri, 13 May 1981 19:00:00 -0600

Subject:Correo adjunto

Este correo contiene el formulario de respuesta solicitado anteriormente.

Saludos.

--dos--

HTML code for the main body.

Notice there is an image

inserted by calling its Content-

ID.

Now let’s define a new multipart/digest section to inform

the mail client that the body contained within boundary

“dos” belongs to an rfc822 complaint format.

Boundary “dos” starts the attached mail structure by defining a

media-type of message/rfc822. Notice here that boundary “dos” is

used instead “uno” to separate the attached message from the main

body.

This is the attached mail in

rfc822 format. As with any

other mail, it has its own

headers separated from

the body by two <CRLF>.

Boundary “dos” here is closed to

finish the structure for the

attached mail.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 94

--uno

Content-Type: image/gif;

 name="logo_tagline_09.gif"

Content-Transfer-Encoding: base64

Content-ID: <image1>

Content-Description: logo_tagline_09.gif

Content-Location: logo_tagline_09.gif

R0lGODlhMQEyAPcAAPmxme45Ls7MzP718tLHye4rKfb29oKAgY+MjfijiPBUPOnp6fnCtOwcJCkl

Jvzh19ExMebl5vN9ZOgPF8TDxPmskuGopsy3t+3t7vSCZdcaIfva2vu9qfRybqWkpERAQZWTk/ed

gfJsUfFgRPi5vPNpTHZzdOu5te9KNd7d3Tg0Nf3o4vNyVfzTw+iOgvr6+v3x7uLh4fz8/PPy8vBd

[…]

Clmw2QRQBsIt3AQgAPFQCaEQA1+d04dN1rJN2wLR2NAdFtBUDdwcDAYw0sVQ0sgQActlEAO9HQri

HQopEAPLEAE4zdo6fQ2wTc+tN93wnR4ZyM/BMNkjXdkYgAEmuN/7VwxpQA0Wzd76oNH1HN8EId0G

DhYmMg+zYA0yIM/DMAz1bQAUXuEGgA1NEOEvQA70fDoJ/uGoERAAOw==

--uno--

.

The final recipient will receive this mail as shown in the image below:

Image 22. Main Multipart/digest message

Now that we are back to the boundary “uno”

scope, we need to encode the

“logo_tagline_09.gif” image inserted in the main

body.

Signature

image

encoded in

base64.

The final step is to close boundary “uno” and close the mail transmission with

<CRLF>.<CRLF>

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 95

Image 23. Attached Message/rfc822 mail

The objective of these examples is to show the main procedures used to create and

interpret an electronic mail. They are intended to show the rules that must be followed by

any mail structure in order for the mail to be received by the final recipient. As you have

seen, several types of mails can be generated by combining any of the methods already

shown. At the end of this section you should now be ready to correctly understand any

mail coding structure and the location of the mail parts inside a plain text transmission no

matter where the mail comes from or its contents.

2.2.6. Reply/Error Codes

Now that we are familiar with the mechanisms used to generate, transfer and read an

email, it’s time to review the codes used to transmit the status of the transmission.

RFC 2821 defines the main codes used as an answer to every SMTP command sent by the

SMTP Client. However, for some conditions, these codes are not specific enough to give

Mail administrators a clue about remediation actions. In January 2003 a new standard was

generated to extend the actual number of codes and its interpretation. This new list

includes a much wider number of conditions and gives much more useful information for

remediation actions. In the following two sections we’ll analyze both types of codes in

order to take according actions when the mail flow gets affected or interrupted.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 96

2.2.6.1. Main Status Codes

MTA servers communicate with each other by means of transmitting a 3 numeric digit

code, each digit specifying a certain condition that will allow mail servers to take the

appropriate decisions. Any system could determine its next action after examining the first

digit; by examining the second digit, a more certain approximation of the condition can be

made, and by examining the third one a more granular description can be obtained.

The definition of the these codes can be found on RFC 2821 under section 4.2.1. The

following list complements these definitions with real life examples of conditions,

responses and possible remediation actions when applicable.

4.2.1 Reply Code Severities and Theory

 [...]

There are five values for the first digit of the reply code:

 1yz Positive Preliminary reply

 The command has been accepted, but the requested action is being

 held in abeyance, pending confirmation of the information in this

 reply. The SMTP client should send another command specifying

 whether to continue or abort the action. Note: un-extended SMTP

 does not have any commands that allow this type of reply, and so

 does not have continue or abort commands.

 2yz Positive Completion reply

 The requested action has been successfully completed. A new

 request may be initiated.

 3yz Positive Intermediate reply

 The command has been accepted, but the requested action is being

 held in abeyance, pending receipt of further information. The

 SMTP client should send another command specifying this

 information. This reply is used in command sequence groups (i.e.,

 in DATA).

 4yz Transient Negative Completion reply

 The command was not accepted, and the requested action did not

 occur. However, the error condition is temporary and the action

 may be requested again. The sender should return to the beginning

 of the command sequence (if any). It is difficult to assign a

 meaning to "transient" when two different sites (receiver- and

 sender-SMTP agents) must agree on the interpretation. Each reply

 in this category might have a different time value, but the SMTP

 client is encouraged to try again. A rule of thumb to determine

 whether a reply fits into the 4yz or the 5yz category (see below)

 is that replies are 4yz if they can be successful if repeated

 without any change in command form or in properties of the sender

 or receiver (that is, the command is repeated identically and the

 receiver does not put up a new implementation.)

 Errors under this category will always end up with the SMTP Client

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 97

 queuing the rejected mail. This is the main reason for performance
 degradation and slow delivery problems.

 5yz Permanent Negative Completion reply

 The command was not accepted and the requested action did not

 occur. The SMTP client is discouraged from repeating the exact

 request (in the same sequence). Even some "permanent" error

 conditions can be corrected, so the human user may want to direct

 the SMTP client to reinitiate the command sequence by direct

 action at some point in the future (e.g., after the spelling has

 been changed, or the user has altered the account status).

Errors under this category will NEVER end up in queuing problems as
the SMTP client should delete its original copy of the mail and
send an NDR (Non-Delivery-Response) to the original sender
informing the reason for which the mail was not delivered.

 [...]

 The second digit encodes responses in specific categories:

 x0z Syntax: These replies refer to syntax errors, syntactically

 correct commands that do not fit any functional category, and

 unimplemented or superfluous commands.

 x1z Information: These are replies to requests for information,

 such as status or help.

 x2z Connections: These are replies referring to the transmission

 channel.

 x3z Unspecified.

 x4z Unspecified.

 x5z Mail system: These replies indicate the status of the receiver

 mail system vis-a-vis the requested transfer or other mail system

 action.

 The third digit gives a finer gradation of meaning in each category

 specified by the second digit. The list of replies illustrates this.

 Each reply text is recommended rather than mandatory, and may even

 change according to the command with which it is associated. On the

 other hand, the reply codes must strictly follow the specifications

 in this section. Receiver implementations should not invent new

 codes for slightly different situations from the ones described here,

 but rather adapt codes already defined.

This RFC allows for the status codes to show text for human interpretation in more than

one line when the condition requires it as long as the following syntax rules are met:

 The reply text may be longer than a single line; in these cases the

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 98

 complete text must be marked so the SMTP client knows when it can

 stop reading the reply. This requires a special format to indicate a

 multiple line reply.

 The format for multiline replies requires that every line, except the

 last, begin with the reply code, followed immediately by a hyphen,

 "-" (also known as minus), followed by text. The last line will

 begin with the reply code, followed immediately by <SP>, optionally

 some text, and <CRLF>. As noted above, servers SHOULD send the <SP>

 if subsequent text is not sent, but clients MUST be prepared for it

 to be omitted.

An example of this implementation is the response to the EHLO command:

250-hub.rskala.com Hello [192.168.0.89]

250-SIZE

250-PIPELINING

250-DSN

250-ENHANCEDSTATUSCODES

250-STARTTLS

250-X-ANONYMOUSTLS

250-AUTH NTLM

250-X-EXPS GSSAPI NTLM

250-8BITMIME

250-BINARYMIME

250-CHUNKING

250-XEXCH50

250 XRDST

This example confirms the previous syntax. As noted above, you should notice the last line

ends with a space after the 250 numeric code, indicating the end of the reply description.

The following table shows an ordered list of the RFC 2821 numeric codes as they are

shown in the standard.

Code Description
211 System status, or system help reply

214 Help message (Information on how to use the receiver

or the meaning of a particular non-standard command;

this reply is useful only to the human user)

220 <domain> Service ready

221 <domain> Service closing transmission channel

250 Requested mail action okay, completed

251 User not local; will forward to <forward-path>

252 Cannot VRFY user, but will accept message and attempt

delivery

354 Start mail input; end with <CRLF>.<CRLF>

All of these lines should

be considered as part of a

single message from the

SMTP Server. All of them

are part of the same 250

reply code. Notice there

is a space after the last

250 indicating the end of

the reply.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 99

Code Description
421 <domain> Service not available, closing transmission

channel (This may be a reply to any command if the

service knows it must shut down)

450 Requested mail action not taken: mailbox unavailable

(e.g., mailbox busy or temporarily blocked for policy

reasons)

451 Requested action aborted: local error in processing

452 Requested action not taken: insufficient system

storage

455 Server unable to accommodate parameters

500 Syntax error, command unrecognized (This may include

errors such as command line too long)

501 Syntax error in parameters or arguments

502 Command not implemented

503 Bad sequence of commands

504 Command parameter not implemented

550 Requested action not taken: mailbox unavailable

(e.g., mailbox not found, no access, or command

rejected for policy reasons)

551 User not local; please try <forward-path>

552 Requested mail action aborted: exceeded storage

allocation

553 Requested action not taken: mailbox name not allowed

(e.g., mailbox syntax incorrect)

554 Transaction failed (Or, in the case of a connection-

opening response, ―No SMTP service here‖)

555 MAIL FROM/RCPT TO parameters not recognized or not

implemented

Table 11. Reply / Error codes from RFC 2821

2.2.6.2. Extended Status Codes

As seen in the previous section, the number of situations that can be addressed with the

main status codes defined by RFC 2821 is not enough to cover the wide range of

conditions a mail transfer may face. RFC 3463 defines a new set to cover this need. The

next paragraph is an extract of the RFC defining this new set.

 SMTP [SMTP] error codes have historically been used for reporting

 mail system errors. Because of limitations in the SMTP code design,

 these are not suitable for use in delivery status notifications.

 SMTP provides about 12 useful codes for delivery reports. The

 majority of the codes are protocol specific response codes such as

 the 354 response to the SMTP data command. Each of the 12 useful

 codes are overloaded to indicate several error conditions. SMTP

 suffers some scars from history, most notably the unfortunate damage

 to the reply code extension mechanism by uncontrolled use. This

 proposal facilitates future extensibility by requiring the client to

 interpret unknown error codes according to the theory of codes while

 requiring servers to register new response codes.

http://tools.ietf.org/html/rfc3463#ref-SMTP

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 100

In this section we’ll show the advantages of this new set and the way it extends the

original codes. We’ll start by showing the structure this new set must follow:

 The syntax of the new status codes is defined as:

 status-code = class "." subject "." detail

 class = "2"/"4"/"5"

 subject = 1*3digit

 detail = 1*3digit

The “class” parameter defines the general category to which the code belongs to. This

may be 2-Success, 4-Transient Failure and 5-Permanent Failure. Its definition is given in by

the RFC described below:

 2.XXX.XXX Success

 Success specifies that the DSN is reporting a positive delivery

 action. Detail sub-codes may provide notification of

 transformations required for delivery.

 4.XXX.XXX Persistent Transient Failure

 A persistent transient failure is one in which the message as

 sent is valid, but persistence of some temporary condition has

 caused abandonment or delay of attempts to send the message.

 If this code accompanies a delivery failure report, sending in

 the future may be successful.

 5.XXX.XXX Permanent Failure

 A permanent failure is one which is not likely to be resolved

 by resending the message in the current form. Some change to

 the message or the destination must be made for successful

 delivery.

The “subject” parameter specifies the notification status. The meaning of this value

applies to any of the three values previously presented. The values for “subject” may be

one of the following:

 X.0.XXX Other or Undefined Status

 There is no additional subject information available.

 X.1.XXX Addressing Status

 The address status reports on the originator or destination

 address. It may include address syntax or validity. These

 errors can generally be corrected by the sender and retried.

 X.2.XXX Mailbox Status

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 101

 Mailbox status indicates that something having to do with the

 mailbox has caused this DSN. Mailbox issues are assumed to be

 under the general control of the recipient.

 X.3.XXX Mail System Status

 Mail system status indicates that something having to do with

 the destination system has caused this DSN. System issues are

 assumed to be under the general control of the destination

 system administrator.

 X.4.XXX Network and Routing Status

 The networking or routing codes report status about the

 delivery system itself. These system components include any

 necessary infrastructure such as directory and routing

 services. Network issues are assumed to be under the control

 of the destination or intermediate system administrator.

 X.5.XXX Mail Delivery Protocol Status

 The mail delivery protocol status codes report failures

 involving the message delivery protocol. These failures

 include the full range of problems resulting from

 implementation errors or an unreliable connection.

 X.6.XXX Message Content or Media Status

 The message content or media status codes report failures

 involving the content of the message. These codes report

 failures due to translation, transcoding, or otherwise

 unsupported message media. Message content or media issues are

 under the control of both the sender and the receiver, both of

 which must support a common set of supported content-types.

 X.7.XXX Security or Policy Status

 The security or policy status codes report failures involving

 policies such as per-recipient or per-host filtering and

 cryptographic operations. Security and policy status issues

 are assumed to be under the control of either or both the

 sender and recipient. Both the sender and recipient must

 permit the exchange of messages and arrange the exchange of

 necessary keys and certificates for cryptographic operations.

The “detail” parameter specifies the particular condition reported by status code. This

value applies to each of the “subject” values. The values “detail” may have are shown

below:

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 102

3.1 Undefined Status and Others

 X.0.0 Other undefined Status

 Other undefined status is the only undefined error code. It

 should be used for all errors for which only the class of the

 error is known.

Examples:

C> RSET

S> 250 2.0.0 user Resetting

Or

S> 250 2.0.0 Resetting

This is a very common response code for the RSET command. This command is used to
indicate the SMTP Server it must ignore any previous information and to clear all of its
buffers to receive a completely new mail.

dsn=4.0.0, 452 Too many recipients received this hour (in reply to RCPT

TO command))

This code indicates a temporal rejection because the SMTP Server is configured to accept
only certain number of recipients in a given time window. From the SMTP Client side there
are no actions to mitigate this condition but to wait until the SMTP Server is able to
receive connections again.

dsn=4.0.0, 451 unable to verify user (in reply to RCPT TO command))

In this case, the SMTP Server indicates the mailbox couldn’t get validated, this may be
because it doesn’t exist, mailbox is an undefined alias or the mailbox is temporarily
disabled.

dsn=4.0.0, 451 qq trouble in home directory (#4.3.0) (in reply to end of

DATA command))

This code indicates a problem with the SMTP Server resources, there are no actions to be
made from the SMTP Client side to correct this condition, the responsibility belongs to the
SMTP Server only.

dsn=4.0.0, 451 Could not load DRD for domain (domain.com) rcpt

(user@domain.com) (in reply to RCPT TO command))

This code indicates a configuration problem. This may be a relay related problem on the
SMTP Server, there are no actions from the SMTP Client side to mitigate this condition.

dsn=4.0.0, 452 <user@domain.com> Mailbox size limit exceeded (in reply to

RCPT TO command))

This code indicates the recipient’s mailbox has reached its storage limit and won’t accept
new mail until some free space is available. The only one that can resolve this condition is

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 103

either the mail administrator or the mailbox owner by increasing the storage limit or
erasing old mails.

dsn=4.0.0, 451 Requested action aborted: local error in processing (code:

11) (in reply to RCPT TO command))

This code indicates a configuration / performance problem on the SMTP Server side.

dsn=4.0.0, 451 The server is too busy, please try again later (in reply

to RCPT TO command))

dsn=4.0.0, 452 Requested action not taken: insufficient system storage

(in reply to MAIL FROM command))

These examples show a condition where the SMTP Server has exhausted its available
resources to process new mails. This condition must be fixed on the SMTP Server side.

dsn=4.0.0, 451 lowest numbered MX record points to local host (in reply

to RCPT TO command))

This code indicates the SMTP Server is probably an SMTP Proxy, this is, an anti-spam
gateway appliance that first cleans all mail flow and then delivers the cleaned mail to the
internal server. In this case, the error is telling the SMTP Client that the relay for the
destination domain is actually pointing to itself, a condition that may provoke a loop
where the mail won’t be able to get out of the server. This error is commonly a relay or
smart host or delivery routes configuration problem that must be fixed on the SMTP
Server side.

dsn=4.0.0, 450 <user@domain.com>: User unknown in local recipient table

(in reply to RCPT TO command))

This error indicates the mailbox to which the mail is being sent to cannot be found locally
in the SMTP Server. There may be several reasons for this condition. The first one is that
the mailbox really doesn’t exist in the SMTP Server. The second one is the SMTP Server is
actually an SMTP Proxy that doesn’t have any local mailboxes but its relay is configured to
accept such mailboxes as its own. A third possibility is the mailbox didn’t contained the
domain part, for example, the mailbox was “user” instead of “user@domain”. In these
cases most of mail servers will try to auto complete the domain part with its own name. In
such cases when the mailbox is trying to be delivered, the SMTP Proxy will try to look in its
own user’s table instead to deliver the mail to the internal server.

dsn=4.0.0, host:[IP] refused to talk to me: 421 4.0.0 Intrusion

prevention active for [IP])

This is an example of an IPS rule being triggered because of file attached to the original
mail that contains malware or an exploit.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 104

dsn=4.0.0, 450 <user@domain.com>… User information temporarily

unavailable (in reply to RCPT TO command))

This error indicates that probably the SMTP Server is using an integrated LDAP service that
is not available at the time. In such conditions the SMTP Server will not be able to accept
new mails because it is not able to validate if the recipient’s mailbox exists. This condition
can only be remediated on the SMTP Server side.

dsn=4.0.0, 451-Your mail was previously greylisted and the timeout has

not yet expired. 451-You should wait another 298

dsn=4.0.0, 451 Still greylisted – please try again in five minutes. (in

reply to RCPT TO command))

This code indicates the SMTP Client’ IP address is being blocked temporarily by a black list
on the SMTP Server Side and it hasn’t reached its time limit to allow new mails to be
received again. SMTP Client should wait until its IP address is taken out from the black list.

3.2 Address Status

 X.1.0 Other address status

 Something about the address specified in the message caused

 this DSN.

Examples:

C> MAIL FROM:<user@domain.com>

S> 250 2.1.0 user@domain.com...Sender OK

This example shows the mailbox has been successfully accepted because it complies with
the appropriate syntax.

 X.1.1 Bad destination mailbox address

 The mailbox specified in the address does not exist. For

 Internet mail names, this means the address portion to the left

 of the "@" sign is invalid. This code is only useful for

 permanent failures.

Examples:

550 5.1.1 <asdf>: Recipient address rejected: User unknown in local

recipient table

550 5.1.1 unknown or illegal alias:user@domain.com (in reply to RCPT TO

command)

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 105

Both examples show a condition where the mailbox or alias do not exist (or were deleted)
from the SMTP Server. This is a typical Postfix error description. It could also happen that
the mailbox does actually exist but the alias is not yet updated on the Postfix alias table.

 X.1.2 Bad destination system address

 The destination system specified in the address does not exist

 or is incapable of accepting mail. For Internet mail names,

 this means the address portion to the right of the "@" is

 invalid for mail. This code is only useful for permanent

 failures.

 X.1.3 Bad destination mailbox address syntax

 The destination address was syntactically invalid. This can

 apply to any field in the address. This code is only useful

 for permanent failures.

Examples:

C> RCPT TO:<asdf@#(.com>

S> 501 5.1.3 Bad recipient address syntax

This condition can only be resolved by the original sender. The SMTP Server cannot
mitigate this condition as the mailbox cannot be appropriately validated as a valid mailbox
syntax.

 X.1.4 Destination mailbox address ambiguous

 The mailbox address as specified matches one or more recipients

 on the destination system. This may result if a heuristic

 address mapping algorithm is used to map the specified address

 to a local mailbox name.

 X.1.5 Destination address valid

 This mailbox address as specified was valid. This status code

 should be used for positive delivery reports.

Examples:

C> RCPT TO:<user@domain.com>

S> 250 2.1.5 user@domain.com

This example shows a condition where the SMTP Server has accepted the recipient’s
mailbox as valid.

 X.1.6 Destination mailbox has moved, No forwarding address

 The mailbox address provided was at one time valid, but mail is

 no longer being accepted for that address. This code is only

 useful for permanent failures.

 X.1.7 Bad sender's mailbox address syntax

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 106

 The sender's address was syntactically invalid. This can apply

 to any field in the address.

Examples:

C> MAIL FROM:<kd#‖.>

S> 501 5.1.7 Bad sender address syntax

This example shows a condition where the SMTP Server rejects a mailbox because it
doesn’t have the right syntax.

 X.1.8 Bad sender's system address

 The sender's system specified in the address does not exist or

 is incapable of accepting return mail. For domain names, this

 means the address portion to the right of the "@" is invalid

 for mail.

Examples:

C> MAIL FROM:<user@kdislskdisl.com>

S> 450 4.1.8 <user@kdislskdisl.com>: Sender address rejected: Domain not

found

This kind of errors occur when the SMTP Server has a PTR validation filter enabled to make
sure the sender’s domain actually exists. This type of filter is not recommended because
not all MTA servers have their PTR records registered on public DNS server. This can also
result in valid mails being rejected.

3.3 Mailbox Status

 X.2.0 Other or undefined mailbox status

 The mailbox exists, but something about the destination mailbox

 has caused the sending of this DSN.

Examples:

dsn=4.2.0, 450 4.2.0 <user@domain.com>: Recipient address rejected:

Greylisted (in reply to RCPT TO command))

In this example, the SMTP Client’s IP Address is in a black list so temporarily no new mails
will be received.

 X.2.1 Mailbox disabled, not accepting messages

 The mailbox exists, but is not accepting messages. This may be

 a permanent error if the mailbox will never be re-enabled or a

 transient error if the mailbox is only temporarily disabled.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 107

Examples:

dsn=4.2.1, 451 4.2.1 mailbox temporarily disabled: user@domain.com (in

reply to RCPT TO command))

dsn=4.2.1, 451 4.2.1 Mailbox busy, try again later (in reply to RCPT TO

command))

550 5.2.1 user disabled; cannot receive new mail: user@domain.com (in

reply to RCPT TO command)

This code means the mailbox does exist but it not able to receive new mail anymore.
There may be several causes for these, for example, the mailbox may be full and the mail
administrator has temporarily or permanently disable it; the user may no longer work for
the company and the mailbox is temporarily disabled until the separation process is
finished. It could also happen the user has left the company and its mailbox has been
disabled but it has never been deleted.

 X.2.2 Mailbox full

 The mailbox is full because the user has exceeded a per-mailbox

 administrative quota or physical capacity. The general

 semantics implies that the recipient can delete messages to

 make more space available. This code should be used as a

 persistent transient failure.

451 4.2.2 user over quota; cannot receive new mail: user@domain.com (in

reply to RCPT TO command)

dsn=4.2.2, 452 4.2.2 Recipient Unable to accept message – mailbox

full(host) (in reply to RCPT TO command))

dsn=4.2.2, 450 4.2.2 <user@domain.com>… Account user@domain.com has

exceeded storage allocation. Please try again later. (in reply to RCPT

This error is very straight forward and tells the user’s mailbox is full. The only way to
resolve this if for the mail administrator to increase the mailbox storage quota or for the
user to free some space.

 X.2.3 Message length exceeds administrative limit

 A per-mailbox administrative message length limit has been

 exceeded. This status code should be used when the per-mailbox

 message length limit is less than the general system limit.

 This code should be used as a permanent failure.

 X.2.4 Mailing list expansion problem

 The mailbox is a mailing list address and the mailing list was

 unable to be expanded. This code may represent a permanent

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 108

 failure or a persistent transient failure.

3.4 Mail system status

 X.3.0 Other or undefined mail system status

 The destination system exists and normally accepts mail, but

 something about the system has caused the generation of this

 DSN.

Examples:

dsn=4.3.0, 451 4.3.0 <user@domain.com>: Temporary lookup failure (in

reply to RCPT TO command))

dsn=4.3.0, 451 4.3.0 Message temporarily deferred. Please try again

later. (in reply to RCPT TO command))

These codes indicate a problem with the mailbox resolution service, probably a an LDAP
service is not available at the time to validate the existence of the recipient’s mailbox.

 X.3.1 Mail system full

 Mail system storage has been exceeded. The general semantics

 imply that the individual recipient may not be able to delete

 material to make room for additional messages. This is useful

 only as a persistent transient error.

Examples:

dsn=4.3.1, 452 4.3.1 Insufficient system storage (in reply to MAIL FROM

command))

This error means there is no more free space in the mail server to accept new mail, in this
case all mailboxes are affected.

 X.3.2 System not accepting network messages

 The host on which the mailbox is resident is not accepting

 messages. Examples of such conditions include an immanent

 shutdown, excessive load, or system maintenance. This is

 useful for both permanent and persistent transient errors.

Examples:

dsn=4.3.2, host [IP] refused to talk to me: 421 4.3.2 Too many open

connections.)

dsn=4.3.2, to talk to me: 421 4.3.2 rejected: Too much connections from

xxx.xxx.xxx[XX.XX.XX.XX])

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 109

dsn=4.3.2, 452 4.3.2 Connection rate limit exceeded. (in reply to MAIL

FROM command))

dsn=4.3.2, 451 4.3.2 Please try again later (in reply to RCPT TO

command))

dsn=4.3.2, 451 4.3.2 Please try again later (in reply to MAIL FROM

command))

dsn=4.3.2, 451 4.3.2 Greylisting is in effect (in reply to end of DATA

command))

These error are generated when the SMTP Client is sending too many connections to the
SMTP Server causing a temporary blocking of its IP address. Usually there are no action to
implement in order to correct this condition by the SMTP Client, after some time the IP
may be taken out the blocking list but in case this doesn’t happen, the SMTP Client
administrator should directly contact the SMTP Server admin to manually take out its IP
from the black list.

 X.3.3 System not capable of selected features

 Selected features specified for the message are not supported

 by the destination system. This can occur in gateways when

 features from one domain cannot be mapped onto the supported

 feature in another.

 X.3.4 Message too big for system

 The message is larger than per-message size limit. This limit

 may either be for physical or administrative reasons. This is

 useful only as a permanent error.

Examples:

C> MAIL FROM:user@domain.com SIZE=9999999999

S> 552 5.3.4 Message size exceeds file system imposed limit

The recipient cannot implement any actions to correct this condition, the sender in this
case should consider the size limitation on the SMTP Server to correct the condition.

 X.3.5 System incorrectly configured

 The system is not configured in a manner that will permit it to

 accept this message.

3.5 Network and Routing Status

 X.4.0 Other or undefined network or routing status

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 110

 Something went wrong with the networking, but it is not clear

 what the problem is, or the problem cannot be well expressed

 with any of the other provided detail codes.

 X.4.1 No answer from host

 The outbound connection attempt was not answered, because

 either the remote system was busy, or was unable to take a

 call. This is useful only as a persistent transient error.

Examples:

dsn=4.4.1, connect to host[IP]: Connection refused

dsn=4.4.1, connect to host[IP: Connection timed out

dsn=4.4.1, Network is unreachable

Even when this error denotes a network problem, it is usually received when there is no
service listening on port 25. When receiving such errors, the SMTP Client admin should
first validate if the domain is actually still receiving mail and if it does, validate if it has a
corresponding MX record associated, if it doesn’t exist then the IP address where the
SMTP Client is trying to deliver mail corresponds to an A record which is generally used as
a Web server, this is the reason for the connection being rejected all the time. Notice that
the error reported here is a 4XX type, this is because the domain does exist given the fact
that it has an A record published, otherwise the error would be a 5XX type. The “Network
is unreachable” is usually caused by physical problems may it be a network card, switch,
firewall or any other device that is temporarily unavailable.

 X.4.2 Bad connection

 The outbound connection was established, but was unable to

 complete the message transaction, either because of time-out,

 or inadequate connection quality. This is useful only as a

 persistent transient error.

Examples:
4.4.2, status=deferred (lost connection with xx.xx.xx.xx[xx.xx.xx.xx]

while sending end of data — message may be sent more than once)

4.4.2, status=deferred (lost connection with xx.xx.xx.xx[xx.xx.xx.xx]

while sending message body)

4.4.2, status=deferred (delivery temporarily suspended: lost connection

with xx.xx.xx.xx[xx.xx.xx.xx] while sending end of data — message may be

sent more than once)

dsn=4.4.2, timed out while receiving the initial server greeting)

dsn=4.4.2, timed out while sending DATA command)

dsn=4.4.2, timed out while performing the HELO handshake)

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 111

dsn=4.4.2, lost connection with host[IP] while performing the HELO

handshake)

dsn=4.4.2, lost connection with host[IP] while sending RCPT TO)

This code implies a mail was being transmitted while the network connection suddenly
failed. In this case both SMTP Client and Server should wait for a time-out after which they
should drop the connection. The SMTP Client should assume this code and queue the mail
for a later delivery. The SMTP Server simply drops the connection.

For a further analysis about this code you can read our following posts:

[SPANISH] Análisis de pérdida de conexión en IMSVA (dsn=4.4.2)

Postfix Lost connection analysis | 421 4.4.2 host Error: timeout exceeded

 X.4.3 Directory server failure

 The network system was unable to forward the message, because a

 directory server was unavailable. This is useful only as a

 persistent transient error.

 The inability to connect to an Internet DNS server is one

 example of the directory server failure error.

Examples:

4.4.3, status=deferred (Host or domain name not found. Name service error

for name=domain.com type=MX: Host not found, try again)

To correct this condition, the SMTP Client should check its DNS server or use a public one
like 8.8.8.8.

 X.4.4 Unable to route

 The mail system was unable to determine the next hop for the

 message because the necessary routing information was

 unavailable from the directory server. This is useful for both

 permanent and persistent transient errors.

 A DNS lookup returning only an SOA (Start of Administration)

 record for a domain name is one example of the unable to route

 error.

Ejemplo:

5.4.4, status=bounced (Host or domain name not found. Name service error

for name=domain.com type=AAAA: Host not found)

This condition generally falls under the responsibility of the sender and may be caused by

the sender wrongly typing the domain name part of the recipient’s mailbox.

http://www.redinskala.com/2013/03/26/analisis-de-perdida-de-conexion-en-imsva-dsn4-4-2/
http://www.redinskala.com/2013/10/11/analisis-421-error-timeout-exceeded/

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 112

 X.4.5 Mail system congestion

 The mail system was unable to deliver the message because the

 mail system was congested. This is useful only as a persistent

 transient error.

Examples:

dsn=4.4.5, host[IP] refused to talk to me: 421 4.4.5 Directory harvest

attack detected)

In this case, the SMTP Server has received several mails to nonexistent mailboxes and has
temporarily blocked the SMTP Client IP address assuming a Directory Harvest Attack
(DHA) may be running against it.

dsn=4.4.5, 452 4.4.5 Insufficient disk space; try again later (in reply

to MAIL FROM command))

In this example, the SMTP Server has ran out of free space to process new mails.

dsn=4.4.5, to talk to me: 421 4.4.5 Too many SMTP connections from this

host)

In this example, the SMTP Server has received too many new connections from the SMTP
Client IP address and has decided to temporarily block it to preserve some free open
connections for other SMTP Clients.

 X.4.7 Delivery time expired

 The message was considered too old by the rejecting system,

 either because it remained on that host too long or because the

 time-to-live value specified by the sender of the message was

 exceeded. If possible, the code for the actual problem found

 when delivery was attempted should be returned rather than this

 code.

Examples:

BA13F20ABD: from=<user@domain.com>, status=expired, returned to sender

In this example taken out from a Postfix maillog, a 5.4.7 error code has been assumed to
record this line. This code, when needed, should be a 5XX type because the mail won’t get
re-queued again.

3.6 Mail Delivery Protocol Status

 X.5.0 Other or undefined protocol status

 Something was wrong with the protocol necessary to deliver the

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 113

 message to the next hop and the problem cannot be well

 expressed with any of the other provided detail codes.

Ejemplo:

dsn=4.5.0, 450 4.5.0 <user@domain.com>... Account user@domain.com is

temporarily unavailable. Please try again later. (in reply to RCPT TO

command)

This error may be received because the SMTP Client IP address is being blocked, or
because it uses an LDAP service to validate the existence of the mailbox but it is not
available at the time.

 X.5.1 Invalid command

 A mail transaction protocol command was issued which was either

 out of sequence or unsupported. This is useful only as a

 permanent error.

Examples:

503 5.5.1 Error: send HELO/EHLO first

This problem can only be resolved on the SMTP Client by issuing the HELO/EHLO
command first.

dsn=4.5.1, 451 4.5.1 Mailbox full (in reply to end of DATA command))

This is a typical error of implementation of this code since it is not related to this DSN
description and also there is already a DSN for full mailbox specific issues.

 X.5.2 Syntax error

 A mail transaction protocol command was issued which could not

 be interpreted, either because the syntax was wrong or the

 command is unrecognized. This is useful only as a permanent

 error.

Examples:
500 5.5.2 Error: bad syntax

502 5.5.2 Error: command not recognized

504 5.5.2 <..>: Helo command rejected: need fully-qualified hostname

504 5.5.2 <a>: Sender address rejected: need fully-qualified address

504 5.5.2 <a>: Recipient address rejected: need fully-qualified address

This problem must be corrected at the SMTP Client side by issuing the proper commands
and syntax.

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 114

 X.5.3 Too many recipients

 More recipients were specified for the message than could have

 been delivered by the protocol. This error should normally

 result in the segmentation of the message into two, the

 remainder of the recipients to be delivered on a subsequent

 delivery attempt. It is included in this list in the event

 that such segmentation is not possible.

Examples:

451 4.5.3 Too many recipients specified. (in reply to RCPT TO command)

The consequence for this kind of errors is not that serious because of an implicit rule in
RFC 2821 that suggest that whenever this situation occurs, the SMTP Server should accept
the mail for the already accepted recipients. For the rejected ones, the mail should remain
queued in the SMTP Client for a later retry only for the remaining recipients. Because of
this, mail logs may show duplicate entries for the same mail. For example, in the Trend
Micro IMSVA anti-spam solution, the Message Tracking logs will show duplicate or more
entries for the same mail under this condition, the same applies for other solutions as
well. If you have the need to impose a limit in the number of recipients, you should set the
SMTP limit as higher as possible to avoid the duplicate entries and then configure a
number of recipients policy.

 X.5.4 Invalid command arguments

 A valid mail transaction protocol command was issued with

 invalid arguments, either because the arguments were out of

 range or represented unrecognized features. This is useful

 only as a permanent error.

Examples:

501 5.5.4 Syntax: MAIL FROM:<address>

501 5.5.4 Syntax: RSET

501 5.5.4 Bad message size syntax

555 5.5.4 Unsupported option: k

 X.5.5 Wrong protocol version

 A protocol version mis-match existed which could not be

 automatically resolved by the communicating parties.

3.7 Message Content or Message Media Status

 X.6.0 Other or undefined media error

 Something about the content of a message caused it to be

 considered undeliverable and the problem cannot be well

 expressed with any of the other provided detail codes.

 X.6.1 Media not supported

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 115

 The media of the message is not supported by either the

 delivery protocol or the next system in the forwarding path.

 This is useful only as a permanent error.

 X.6.2 Conversion required and prohibited

 The content of the message must be converted before it can be

 delivered and such conversion is not permitted. Such

 prohibitions may be the expression of the sender in the message

 itself or the policy of the sending host.

 X.6.3 Conversion required but not supported

 The message content must be converted in order to be forwarded

 but such conversion is not possible or is not practical by a

 host in the forwarding path. This condition may result when an

 ESMTP gateway supports 8bit transport but is not able to

 downgrade the message to 7 bit as required for the next hop.

 X.6.4 Conversion with loss performed

 This is a warning sent to the sender when message delivery was

 successfully but when the delivery required a conversion in

 which some data was lost. This may also be a permanent error

 if the sender has indicated that conversion with loss is

 prohibited for the message.

 X.6.5 Conversion Failed

 A conversion was required but was unsuccessful. This may be

 useful as a permanent or persistent temporary notification.

3.8 Security or Policy Status

 X.7.0 Other or undefined security status

 Something related to security caused the message to be

 returned, and the problem cannot be well expressed with any of

 the other provided detail codes. This status code may also be

 used when the condition cannot be further described because of

 security policies in force.

Examples:

421 4.7.0 mx.server.com Error: too many errors

Almost all Mail servers have an error amount limit, once exceeded you would see errors

like this.

 X.7.1 Delivery not authorized, message refused

 The sender is not authorized to send to the destination. This

 can be the result of per-host or per-recipient filtering. This

 memo does not discuss the merits of any such filtering, but

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 116

 provides a mechanism to report such. This is useful only as a

 permanent error.

Examples:
554 5.7.1 <user@domain.com>: Relay access denied.

This code is received when a mail is sent to a mailbox belonging to a domain that is not
within the relay of the SMTP Server. This may be caused by a wrong relay configuration
where the appropriate domain should be added to the relay list. If the relay is ok, then this
code may indicate an attack where an attempt is being made to the SMTP Server trying to
find if it is an Open Relay Server.

550 5.7.1 <asdf@domain.com>: Sender address rejected: Service

unavailable; SPF check failed and transaction closed due to the

organization’s policy.

This error occurs whenever the sender’s mailbox or the domain used in the HELO/EHLO
command is not explicitly authorized to be used by the sending IP address. This behavior is
typical in servers validating incoming SMTP Connections with the Sender Policy
Framework (SPF) Protocol.

dsn=4.7.1, 450 4.7.1 You've exceeded your sending limit to this domain.

(in reply to end of DATA command))

This example shows an SMTP Server configured to receive only certain amount of mails
from the same IP address in the same SMTP session or in a given time window; whenever
either of both is reached, the IP is automatically blocked. To mitigate this condition, the
SMTP Client should limit the amount of mails sent to a given domain in both, the same
session or in a certain time window.

dsn=4.7.1, 450 4.7.1 <host.domain.com>: Helo command rejected: Host not

found (in reply to RCPT TO command))

dsn=4.7.1, 450 4.7.1 Client host rejected: cannot find your hostname,

[IP] (in reply to RCPT TO command))

This is error is received when the SMTP Client uses its own FQDN as the value for the
HELO/EHLO command but it doesn’t have an associated A record in its public DNS server.
There are some servers that will try to validate if the argument of EHLO does exist before
accepting new mail, they do this by requesting the A record for the FQDN presented as
argument for the EHLO command. The problem here is that not all mail servers have an
associated A record to its FQDN. For example, let’s suppose the mail server for the
DOMAIN.COM domain has this FQDN antispam.localdomain. When this kind of validation
is performed, the SMTP Server will try to resolve the A record for antispam.localdomain,
which obviously will fail because this name doesn’t have an associated public A record.
This condition can be mitigated or resolved by renaming the server to an FQDN that has
an A record, or creating the appropriate A record in the public DNS or instructing the mail
server to use only the domain name as argument of the EHLO command (sending

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 117

DOMAIN.COM instead of antispam.localdomain) or by removing this kind of verification
on the SMTP Server.

dsn=4.7.1, 450 4.7.1 <user@domain.com>: Relay access unavailable. (in

reply to RCPT TO command))

This is a very common error when a company hosts its mail service with an online host but
the service is no longer available, may it be because the company didn’t pay the
corresponding fee, it didn’t renew the service but the host is still keeping its records
online or it has simply changed from one mail host to another and the DNS records change
is being made at the moment. If the MX record is correct and the company is still up, this
error may occur because the SMTP Client is using either its DNS cache or a Smart host to
send mail directly to that domain using a specific address without requesting the MX
record from public DNS servers, in such cases just deleting the smart host to force the MX
record query will solve the problem. For the other scenarios no action can be made on the
SMTP Client side as the domain cannot be relayed.

dsn=4.7.1, 450 4.7.1 <user@domain.com>: Recipient address rejected:

ERROR-GL100 System busy, please try again later. (in reply to RCPT TO

command)

dsn=4.7.1, 451 4.7.1 Service unavailable - try again later (in reply to

DATA command))

dsn=4.7.1, 450 4.7.1 <user@domain.com>: Recipient address rejected:

Policy Rejection- Please try later. (in reply to RCPT TO command))

dsn=4.7.1, 450 4.7.1 <user@domain.com>: Recipient address rejected:

Service temporarily unavailable (in reply to RCPT TO command))

dsn=4.7.1, 451 4.7.1 Please try again later (in reply to DATA command))

This example shows a scenario where the SMTP Client IP address may be temporarily
blocked or the SMTP Server is temporarily unable to process new mail. If the domain does
exist and it has been long time without a successful mail deliver then the best reason
would be for the SMTP Client IP being blocked by the SMTP Sender.

dsn=4.7.1, 451 4.7.1 Greylisting in action, please come back later (in

reply to RCPT TO command))

dsn=4.7.1, 450 4.7.1 <user@domain.com>: Recipient address rejected:

Greylisted (in reply to RCPT TO command))

dsn=4.7.1, 450 4.7.1 <xxx.xxx.xxx[XX.XX.XX.XX]>: Client host rejected:

Greylisted for 5 minutes (in reply to RCPT TO command))

Here the SMTP Client IP address is simply blocked.

 X.7.2 Mailing list expansion prohibited

 The sender is not authorized to send a message to the intended

 mailing list. This is useful only as a permanent error.

 X.7.3 Security conversion required but not possible

Chapter 2. The SMTP Structure www.redinskala.com

Email Structure 118

 A conversion from one secure messaging protocol to another was

 required for delivery and such conversion was not possible.

 This is useful only as a permanent error.

 X.7.4 Security features not supported

 A message contained security features such as secure

 authentication that could not be supported on the delivery

 protocol. This is useful only as a permanent error.

 X.7.5 Cryptographic failure

 A transport system otherwise authorized to validate or decrypt

 a message in transport was unable to do so because necessary

 information such as key was not available or such information

 was invalid.

 X.7.6 Cryptographic algorithm not supported

 A transport system otherwise authorized to validate or decrypt

 a message was unable to do so because the necessary algorithm

 was not supported.

 X.7.7 Message integrity failure

 A transport system otherwise authorized to validate a message

 was unable to do so because the message was corrupted or

 altered. This may be useful as a permanent, transient

 persistent, or successful delivery code.

Examples:

dsn=4.7.7, 451 4.7.7 Excessive userid unknowns from [IP] (in reply to

MAIL FROM command))

This example shows a scenario where an SMTP Server is receiving several mails for

nonexistent mailboxes and assumes it is being under a possible attack, as a defensive

measure it reacts by temporarily blocking the SMTP Client IP address. This situation may

be avoided by dropping mails for which the SMTP Client knows the mailbox doesn’t exist.

By understanding the fundamentals by which the status / reply codes are defined, you’ll

be in a better position to understand what the status of the transmission is by just looking

at the numeric codes.

Chapter 2. The SMTP Structure www.redinskala.com

Native SMTP Vulnerabilities 119

2.3. Native SMTP Vulnerabilities
Now that we have a wider vision about the conforming standards of electronic mail let’s

now study the security holes present in SMTP and how to handle them to avoid attacks

into your Organization.

For a better understanding we’ll classify them according to the mail transmission section

where they can be found: Envelope, Headers, Body and Attachments.

2.3.1. Envelope Vulnerabilities

The SMTP structure makes the protocol vulnerable even from the very moment when the

transmission is starting. The following sections will show the different kind of attacks that

can be made at the Envelope level.

2.3.1.1. Initial connection and the HELO / EHLO Command

Section 3.1 of RFC 2821 establishes that when making the initial connection to an SMTP

Server, this should respond with a 220 status code and identify itself in the greeting with

its software and SMTP versions. For security reasons, it is allowed for an Organization not

willing to expose this kind of information to avoid such kind of greetings.

It is also allowed for the initial connection to be rejected by the SMTP Server as long as the

following conditions are met:

1. Instead of a 220 status code it should respond with a 554.

2. It should wait for the QUIT command and should respond to any other command

with a response like “503 Bad sequence of commands.”.

Any SMTP Server is free to reject incoming connections as long as there is a technical

reason to do so, dropping connections without a reason is forbidden by the RFC. Some of

the reasons for this scenario may be:

a) The server has reached the maximum number of incoming connections it can

handle.

b) The server doesn’t have enough free storage space to process new incoming mails.

c) The SMTP Client IP address is black-listed.

d) The SMTP Client IP address is in violation of internal security policies.

When the SMTP Client receives a 220 greeting, the next step is the Handshake between

both MTA servers. Here, the client has the responsibility to send the HELO/EHLO

Chapter 2. The SMTP Structure www.redinskala.com

Native SMTP Vulnerabilities 120

command to identify itself with its FQDN or domain name. The problem with this rule is

that as long as the syntax is correct, the SMTP Client is not forced to “tell the truth” about

its identity.

The SMTP Server may use any verification mechanism to verify if the identity presented in

the HELO/EHLO command really belongs to the IP address from which the transmission is

being received. To mitigate these problems, the SMTP Server may request the PTR record

for the domain from which the mail is being received from to make sure that name has an

associated public IP address. It can also make use of alternative protocols like SPF and

Sender-ID that pretend to identify if the connecting IP address has a valid domain and if it

is actually authorized to use such domain. The problem here is that not all MTA servers

have a fixed name or legitimate public DNS records, so there will always be a chance for

such verifications to still fail.

If the SMTP Server accepts a connection with code 220, it will place itself in a situation

where it is not allowed to close the connection until the SMTP Client finishes the mail

transmission or until an inactivity time limit has been reached. This can be used by an

attacker to generate dozens, hundreds or even thousands of null sessions, overwhelming

the available free connections of the server and diminishing its capacity to receive new

mails from other sources. In this case, an IP reputation list (either local or in the cloud) and

the tuning for the timeouts periods are the best solution.

Because MX records are public, an attacker may easily choose any of the IP addresses of

the available mails servers to directly send SPAM or start a DoS attack. The logic under this

kind of attack is that some Organizations decide to only protect the MTA servers on higher

priorities while leaving lower priorities with minimum or null security. The best practice

when we face environments where more than one MX record must be published is not to

leave any of such services without any security measures. If the Organization is not able to

maintain the same security level on all servers a Risk Assessment Plan will help in

providing the right justification for such decisions and the required level for each server.

Chapter 2. The SMTP Structure www.redinskala.com

Native SMTP Vulnerabilities 121

2.3.1.2. MAIL

At this level there are several vulnerable points to attack either the SMTP Server of the

final users. On of the most important was the syntax established by RFC 821 for this

command:

RFC 821: MAIL <SP> FROM:<reverse-path> <CRLF>

Where <reverse-path> is the full route to reach the final recipient, including not only the

mailbox name but the series of MTA servers the mail should be relayed trough. In the

times when the protocol was defined this was not a problem but in the earlier beginnings

of year 2000 this syntax was discouraged and forbidden because of the use spammers

were giving to mail servers. For this reason, RFC 2821 and 5321 have now changed the

syntax to:

RFC 2821/5321: MAIL FROM:<reverse-path> [SP <mail-parameters>] <CRLF>

Where <reverse-path> includes only the recipient’s mailbox, however the new syntax of

<mail-parameters> includes new security holes that an attacker can take advantage of.

The following is a description of the vulnerabilities that may be found under this new

definition of the MAIL command:

a) MAIL FROM: <>. RFC 2821-6.1 defines the mechanism by which a mail system can

send notifications to users. The sender for such notifications (as they are being

generated automatically by the MTA server) should be a null reverse-path

represented by a “<>” syntax. Whenever an MTA receives such kind of mails it

should assume there is no return path in case such mail cannot be delivered to the

final recipient, this is to avoid a loop between MTA servers where each would

respond with a null reverse-path to the Non-Delivery-Response (NDR) from the

other MTA. This definition implies the Return-path header should be empty as

well, so there is no way to identify the original mailbox that created the mail.

Under the notification context this is not a problem since the intention of such

mails is just to inform an event to original sender without waiting for a reply.

An attacker can send several mails with a null Return-path hiding its own mailbox

and there would be no way, based on this rule, to identify what the original

sender’s mailbox was, if it really did existed one. The same RFC forbids the blocking

of mails that have a null sender because all the automatic SMTP notification

system would be blocked, this makes it a little harder to mitigate this kind of

attack. However, there is a simple SMTP rule that can be implemented to minimize

this kind of attack, this rule is:

Chapter 2. The SMTP Structure www.redinskala.com

Native SMTP Vulnerabilities 122

Any automatic mail notification with the intention to inform of a mail delivery

failure can only contain one recipient, and this must be the one that appeared on the

original Return-path header of the mail that caused the delivery failure, therefore, a

mail with a null sender can only have ONE recipient, any mail with a null sender and

more than one recipient is in violation of the SMTP Standards and may be blocked or

deleted without generating a new NDR.

b) MAIL FROM:<fake_mailbox>. The protocol establishes only the syntax to be used

for the MAIL command, but it doesn’t force a verification to confirm if the

argument is a legitimate mailbox or if even belongs to the domain it is supposed to

be coming from. This allows the reception of mails where an SMTP Client identifies

itself as EHLO xxx.com and then sends a MAIL command with another domain like

user@yyy.com. According to the protocol this is not a violation and may be

exploited by an attacker to send mails from a mail server using any kind of

mailboxes he/she wants.

A variant from this vulnerability is to send mails with a sender in the Envelope that

is different from the sender appearing in the From Header. This security hole is

implicit in the SMTP definition and is very difficult to detect because the syntax for

the From Header is different than that of the MAIL command, so no unique

comparison is always possible to detect such deviations.

One method used to try to verify the existence of the sender’s mailbox is by

sending a mail probe to the SMTP Client IP address before accepting the RCPT

command, if the sender is accepted then one may assume the user does exist in

the original domain, however this will only work if the MTA checks its recipients

against an LDAP service or an updated list of local users, otherwise it would accept

such probe just to later realize the mailbox didn’t existed. In case the probe is

accepted the SMTP Server may continue to receive the rest of the mail, otherwise

it would send a 4XX or 5XX code to end the transmission.

c) SIZE. When the SMTP Sever requires a restriction on the mail size it is able to

handle, this definition should appear in the Handshake response to indicate the

maximum size it is willing to accept. If no such limit is presented, it can be assumed

such MTA has no limit. An attacker can verify this kind of condition to send larger

mails to overwhelm the Organization’s bandwidth and mailbox storage capacity.

For example, if an SMTP Client send a 30 MB mail with a MAIL FROM:

Chapter 2. The SMTP Structure www.redinskala.com

Native SMTP Vulnerabilities 123

<user@domain.com> SIZE=1024, an SMTP Server with a 10MB (10485760) limit

and will later realize the mail was in violation of its size quota limit. Also notice that

in an SMTP Client doesn’t send the SIZE parameter, this limitation is useless. To

avoid this kind of attacks it is advisable to configure size based policies within your

internal server or at the anti-spam solution, this way, the total SIZE will be

calculated on the actual mail stopping it before it reaches the recipient’s mailbox.

2.3.1.3. RCPT

This command may be used in attacks using the DSN-RCPT-NOTIFY method by issuing a

command like RCPT TO:<user@domain> NOTIFY=SUCCESS and RCPT TO:<user@domain>

NOTIFY=FAILURE. As a result of such notification, an attacker may get aware if any given

mailbox is valid in order to direct SPAM campaigns or other attacks to such addresses.

Besides this, these methods force the SMTP Server to generate new mails to notify the

attacker which means more resources are being used on the Organization’s side.

A spoofing attack is also possible when the attacker sends mails to the right mailbox but

the “To:” Header is different, creating a confusion to the user by not being sure if the mail

was intended for him / her. We’ll talk more about spoofing in the Header Vulnerabilities.

2.3.2. Header Vulnerabilities

These attacks exists mainly because SMTP is designed to be compliant with a certain

syntax but it doesn’t give any mechanisms to the SMTP Server on how to protect itself

from its contents. The following sections will show some of the attacks your Organization

may face at this level.

2.3.2.1. Automatic Notifications

The MDN header Disposition-Notification-To:<user@domain> may be used to learn if a

certain SPAM campaign or the delivery of malware files has been successful and at what

rate. This header will try to get the user’s confirmation to send an automatic notification

to the sender telling the mail was read. With this information, an SMTP Client may

measure the success of this type of campaigns. The Return-Receipt-To:<user@domain>

header may be used instead to try to bypass the user acknowledge to send the

notification, however, this will not necessarily be implemented on al Mail User Clients.

The best recommendation in these cases is to educate users in not responding to

suspicious mails and be cautions in opening such kind of suspicious messages.

Chapter 2. The SMTP Structure www.redinskala.com

Native SMTP Vulnerabilities 124

2.3.2.2. Content mismatch

The MIME format allows the transmission of mails with alternate body sections, this is for

the User Agents to easily decide which section should be presented to the final user,

however, this characteristic may be used by an attacker to send mails with normal

information in one section and a malicious one or SPAM in another. An anti-spam engine

should be able to verify the body content on any of the MIME compliant mail no matter

what the final format to be shown to the user is. Remember that according to MIME rules,

the last format section should be the preferred one to be shown to the user unless it

cannot process it. This may cause that any mail that at glance seems to be normal, may in

fact include malicious content. Because of this, the best solution is an anti-spam solution

that is able to verify SPAM and malicious content in any of the sections for an alternate

MIME compliant message.

2.3.2.3. File formats mismatch

When sending attached files, the MIME format offers a special header which indicates the

“media-type” to which the file belong to, however, this cannot guarantee the file doesn’t

belong to any other format. An attacker can literally present any media-type he wants to

obfuscate the fact that his file is really an executable for example. Because of this, it is

advisable to check for the True-File-Type of attached files instead of using the MIME

headers.

2.3.2.4. Spoofing

There is no official mechanism that allows for the recipient or sender identities

verification. For this reason, any mail can be send using any mailbox address, even one

that actually belongs to the Organization itself. By design, internal mail sent between the

Organization’s users should be process by the internal mail servers without passing

through any Gateway point, based on this, it wouldn’t be possible for a mail with an

Organization sender mailbox address to be received form an external network like

Internet, this scenario falls under the spoofing attack. Any mail that uses a legitimate

domain name for which he/she is not the owner falls also under this category, for example

a mail supposedly coming from @facebook, when actually the SMTP Client is not

authorized to use such domain name. Unfortunately the SMTP protocol doesn’t include a

mechanism to prevent such attacks. To mitigate these attacks it is advisable to use

alternative protocols like SPF or Sender-ID. For internal spoofing attacks, rules can be

configured to intercept mails that contain the Organization’s own domain name in both

From and To, Cc, headers.

Chapter 2. The SMTP Structure www.redinskala.com

Native SMTP Vulnerabilities 125

2.3.3. Body and Attachment Vulnerabilities

Because of the SMTP Protocol native definition, the body contents cannot be verified

against content or file security policies. An attacker could use such limitations to send

SPAM or introduce malware into the Organization if no proper security measures are in

place to detect them. Attacks under this category are described in the following sections

as:

2.3.3.1. SPAM

By definition, SMTP doesn’t impose any restriction on the mail content context. This may

cause the delivery of unwanted mails into the Organization even when they may come

from legitimate sources. SPAM, as early described on Chapter 1, may make use of several

techniques to achieve its goal of being delivered to the final user. The most advisable

solution for this problem is an anti-spam solution that may incorporate one or more of the

following features: heuristic detection, patterns, word and sentence correlation, image

detection and IP reputation verification among others.

2.3.3.2. Content

By design, the SMTP protocol doesn’t allow for a mail content to be matched against

ongoing security policies in the Organization. Content attacks may fall under several sub-

categories like pornography, offensive and racial language, data leakage, embedded

malicious URL’s, etc. To avoid such attacks, is advisable to use a solution capable of

content inspection inside the several sections of and URL reputation inspection before the

mail is delivered to the final recipient.

2.3.3.3. Malware

The MIME Format allows any MTA to send and receive any kind of file formats. Whether

such files are legitimate or not doesn’t fall under the SMTP scope. There is a need to

inspect the file contents and format to decide whether such files should be delivered to

the final recipient. Even when MIME allows any MTA server to know what the attached

file format is, the same structure may be used to hide the real file format as described in

previous sections. The most secure way to know what the format of any given file is, is to

extract the True-File-Type of the file directly from the file itself on not to relay on the

Chapter 2. The SMTP Structure www.redinskala.com

Native SMTP Vulnerabilities 126

MIME headers or the file extension. A proper attachment and malware scanning solution

is advisable to mitigate these attacks.

Chapter 2. The SMTP Structure www.redinskala.com

Summary 127

2.4. Summary

This Chapter has covered the complete structure of any electronic mail (e-mail) either in

plain text or MIME format. We analyzed each of the points from the corresponding RFC’s

that indicate the rules and syntax to use each of the fields, commands, headers and

sections that must be incorporated in the message transmission in order for it to be

considered SMTP compliant and legitimate.

By completing these sections you should now be able to fully understand how an e-mail is

formed and how these structures can be used by attackers to deliver malicious content

into your Organizations along with the measures you should be aware of to prevent them.

Each portion of a mail along with the methods used in its transmission obey to well

defined structures, any deviation may have consequences on the security or reputation of

the Organization.

128

References

SMTP References

RFC 821. Simple Mail Transfer Protocol (Agosto 1982)

http://tools.ietf.org/html/rfc821

RFC 822. Standard for the format of ARPA Internet Text Messages (Agosto 1982)

http://tools.ietf.org/html/rfc822

RFC 2821. Simple Mail Transfer Protocol (Abril 2001)

http://tools.ietf.org/html/rfc2821

RFC 2822. Internet Message Format (Abril 2001)

http://tools.ietf.org/html/rfc2822

RFC 5321. Simple Mail Transfer Protocol (Octubre 2008)

http://tools.ietf.org/html/rfc5321

RFC 5322. Internet Message Format (Octubre 2008)

http://tools.ietf.org/html/rfc5322

RFC 2554. SMTP Service Extension for Authentication (Marzo 1999)

http://tools.ietf.org/html/rfc2554

RFC 5428. A Registry for SMTP Enhanced Mail System Status Codes

http://tools.ietf.org/html/rfc5248

RFC 3463. Enhanced Mail System Status Codes

http://tools.ietf.org/html/rfc3463

RFC 4409. Message Submission for Mail.

http://tools.ietf.org/html/rfc4409

RFC 4954. SMTP Service Extension for Authentication

http://tools.ietf.org/html/rfc4954 (Julio 2007)

http://tools.ietf.org/html/rfc821
http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc2821
http://tools.ietf.org/html/rfc2822
http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc2554
http://tools.ietf.org/html/rfc5248
http://tools.ietf.org/html/rfc3463
http://tools.ietf.org/html/rfc4409
http://tools.ietf.org/html/rfc4954

Appendix www.redinskala.com

 129

RFC 4422. Simple Authentication and Security Layer (SASL)

http://tools.ietf.org/html/rfc4422

RFC 1870. SMTP Service Extension for Message Size Declaration

http://tools.ietf.org/html/rfc1870

RFC 3461. Simple Mail Transfer Protocol (SMTP) Service Extension for Delivery Status

Notification (DSNs)

http://tools.ietf.org/html/rfc3461

RFC 3798. Message Disposition Notification

http://tools.ietf.org/html/rfc3798

RFC 2119. Key words for use in RFCs to Indicate Requirement Levels

http://tools.ietf.org/html/rfc2119

RFC 3282. Content Language Headers

http://tools.ietf.org/html/rfc3282

RFC 2156. MIXER (Mime Internet X.400 Enhanced Relay): Mapping between X.400 and RFC

822/MIME

http://tools.ietf.org/html/rfc2156

MIME Format References

RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet

Message Bodies

http://tools.ietf.org/html/rfc2045

RFC 2046. Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

http://tools.ietf.org/html/rfc2046

RFC 2047. Multipurpose Internet Mail Extensions (MIME) Part Three: Message Header

Extensions for Non-ASCII Text.

http://tools.ietf.org/html/rfc2047

http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc1870
http://tools.ietf.org/html/rfc3461
http://tools.ietf.org/html/rfc3798
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3282
http://tools.ietf.org/html/rfc2156
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2047

Appendix www.redinskala.com

 130

RFC 2048. Multipurpose Internet Mail Extensions (MIME) Part Four: Registration

Procedures.

http://tools.ietf.org/html/rfc2048

RFC 2049. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria

and Examples.

http://tools.ietf.org/html/rfc2049

DNS References

RFC 1034. Domain Names – Concepts and Facilities

http://tools.ietf.org/html/rfc1034

RFC 1035. Domain Names – Implementation and Specification

http://tools.ietf.org/html/rfc1035

Microsoft Exchange Server 2003 References

Exchange Server Message Security Guide

http://technet.microsoft.com/en-us/library/aa996417%28EXCHG.65%29.aspx

Microsoft Exchange Server 2007 References

Exchange 2007 Security Guide

http://technet.microsoft.com/en-us/library/bb691338%28EXCHG.80%29.aspx

Microsoft Exchange Server 2010 References

Exchange 2010 Security Guide

http://technet.microsoft.com/en-us/library/bb691338.aspx

http://tools.ietf.org/html/rfc2048
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035
http://technet.microsoft.com/en-us/library/aa996417%28EXCHG.65%29.aspx
http://technet.microsoft.com/en-us/library/bb691338%28EXCHG.80%29.aspx
http://technet.microsoft.com/en-us/library/bb691338.aspx

Appendix www.redinskala.com

 131

Tools & Utilities References

Base64 Online Decode and Encode

http://www.motobit.com/util/base64-decoder-encoder.asp

EA DomainKeys/DKIM for IIS SMTP Service and Exchange Server

http://www.emailarchitect.net/webapp/downloads.asp

Putty

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Starwind

http://www.starwindsoftware.com/download-free-version

http://www.motobit.com/util/base64-decoder-encoder.asp
http://www.emailarchitect.net/webapp/downloads.asp
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.starwindsoftware.com/download-free-version

	Purpose and Audience
	Chapter 1. Introduction to Email
	Email and Standards
	Email flow components
	Email Threat Landscape
	SPAM
	DHA
	Malware
	Bounced Mail
	Spoofing

	Summary

	Chapter 2. The SMTP Structure
	The SMTP Standards
	RFC 821
	RFC 2821
	RFC 5321

	Email Structure
	2.2.1. Handshake
	2.2.2. Envelope
	2.2.2.1. SIZE
	2.2.2.2. DSN-RCPT-NOTIFY
	2.2.2.3. DSN-RCPT-ORCPT
	2.2.2.4. DSN-MAIL-RET
	2.2.2.5. DSN-MAIL-ENVID
	2.2.2.6. MDN

	Headers
	General rules for headers
	Date and time Headers
	Origin Headers
	Destination Headers
	Identification Headers
	Information Headers
	Tracing Headers
	Optional Headers
	MIME Headers

	Body
	Body Simple
	Alternate Body

	Attachments
	Multipart/mixed
	Multipart/Digest

	Reply/Error Codes
	Main Status Codes
	Extended Status Codes
	Examples:
	Examples:
	Examples:
	Almost all Mail servers have an error amount limit, once exceeded you would see errors like this.
	Examples:

	Native SMTP Vulnerabilities
	Envelope Vulnerabilities
	Initial connection and the HELO / EHLO Command
	MAIL
	RCPT

	Header Vulnerabilities
	Automatic Notifications
	Content mismatch
	File formats mismatch
	Spoofing

	Body and Attachment Vulnerabilities
	SPAM
	Content
	Malware

	Summary

	References
	SMTP References
	MIME Format References
	DNS References
	Microsoft Exchange Server 2003 References
	Microsoft Exchange Server 2007 References
	Microsoft Exchange Server 2010 References
	Tools & Utilities References

